Advertisements
Advertisements
प्रश्न
Q.7
योग
उत्तर
for an A.P.,` p^(th) "term" =t_p=20`
`⇒a(p-1)d=20` ...............(1)
And, `9^(th) "term"=t_q=10`
`⇒a+(q-1)d=10 ............(2)`
subtracting (2) from (1), we get
`(p-1)d-(q-1)d=10`
`⇒ d(p-1-q+1)=10`
`⇒d=10/(p-q)`
Substituting value of d in (1), we get,
`a+(p-1)xx10/(p-q)=20`
`⇒ a+(10p-10)/(p-q)=20`
`⇒a=20-(10p-10)/(p-q)`
`⇒a=(20p-20q-10p+10)/(p-q)`
`⇒ a=(10p-20q+10)/(p-q)`
Now, sum of first (p+q) term,
`s_(p+q)=(p+q)/2[2xx(10p-20q+10)/(p-q)+(p+q-1)xx10/(p-q)]`
`⇒s_(p+q)=(p+q)/2[(20p-40q+20)/(p-q)+(10p+10q-10)/(p-q)]`
`⇒s_(p+q)=(p+q)/2[(20p-40q+20+10p+10q)/(p-q)]`
`⇒s_(p+q)=(p+q)/2[(30p-30q+10)/(p-q)]`
`⇒s_(p+q)=(p+q)/2[(30(p-q))/(p-q)+10/(p-q)]`
`s_(p+q)=(p+q)/2[30+10/(p-q)]`
shaalaa.com
Simple Applications of Arithmetic Progression
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?