Advertisements
Advertisements
प्रश्न
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
उत्तर
वर्तुळाची त्रिज्या r मानू.
रेषा l ही वर्तुळाची P बिंदूत स्पर्शिका असून रेख OP ही त्रिज्या आहे. ......[पक्ष]
∴ रेख OP ⊥ रेषा l .....[स्पर्शिका-त्रिज्या प्रमेय]
जीवा RS || रेषा l ..........[पक्ष]
∴ रेख OP ⊥ जीवा RS
∴ QS = `1/2`RS ......[वर्तुळकेंद्रापासून जीवेवर टाकलेला लंब जीवेस दुभागतो.]
= `1/2 xx 12 = 6` सेमी
तसेच, OQ = `1/2`OP .....[बिंदू O हा OP चा मध्यबिंदू आहे.]
= `1/2` r
ΔOQS मध्ये, ∠OQS = 90° .......[रेख OP ⊥ जीवा RS]
∴ OS2 = OQ2 + QS2 .......[पायथागोरसचे प्रमेय]
∴ r2 = `(1/2 "r")^2 + 6^2`
∴ r2 = `1/4 "r"^2 + 36`
∴ r2 - `1/4 "r"^2` = 36
∴ `3/4 "r"^2 = 36`
∴ r2 = `(36 xx 4)/3` ∴ r2 = 48
∴ r = `sqrt(48)`
= `4sqrt3` सेमी ............[दोन्ही बाजूंचे वर्गमूळ घेऊन]
∴ दिलेल्या वर्तुळाची त्रिज्या `4sqrt3` सेमी आहे.
APPEARS IN
संबंधित प्रश्न
त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.
आकृती मध्ये, केंद्र A व B असणारी वर्तुळे परस्परांना बिंदू E मध्ये स्पर्श करतात. रेषा l ही त्यांची सामाईक स्पर्शिका त्यांना अनुक्रमे C व D मध्ये स्पर्श करते. जर वर्तुळांच्या त्रिज्या अनुक्रमे 4 सेमी व 6 सेमी असतील, तर रेख CD ची लांबी किती असेल?
आकृती मध्ये, रेख EF हा व्यास आणि रेख DF हा स्पर्शिकाखंड आहे. वर्तुळाची त्रिज्या r आहे. तर सिद्ध करा - DE × GE = 4r2
एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?
आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.
(1) MT = किती?
(2) MN = किती?
(3) ∠NSM = किती?
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
सोबतच्या आकृतीमध्ये, केंद्र C असलेल्या वर्तुळात रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते, तर ∠CAB चे माप किती अंश आहे? का?
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.
पक्ष: `square`
साध्य: `square`
सिद्धता:
त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.
ΔPAD आणि ΔQAD यांमध्ये,
बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]
बाजू AD ≅ बाजू AD ...............[`square`]
∠APD ≅ ∠AQD = 90° ............[स्पर्शिका-त्रिज्या प्रमेय]
∴ ΔPAD ≅ ΔQAD ..................[`square`]
∴ बाजू DP ≅ बाजू DQ ...............[`square`]
वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:
∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]