हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 

योग

उत्तर

 

वर्तुळाची त्रिज्या r मानू.

रेषा l ही वर्तुळाची P बिंदूत स्पर्शिका असून रेख OP ही त्रिज्या आहे. ......[पक्ष]

∴ रेख OP ⊥ रेषा l .....[स्पर्शिका-त्रिज्या प्रमेय]

जीवा RS || रेषा l ..........[पक्ष]

∴ रेख OP ⊥ जीवा RS

∴ QS = `1/2`RS  ......[वर्तुळकेंद्रापासून जीवेवर टाकलेला लंब जीवेस दुभागतो.]

= `1/2 xx 12 = 6` सेमी

तसेच, OQ = `1/2`OP  .....[बिंदू O हा OP चा मध्यबिंदू आहे.]

= `1/2` r

ΔOQS मध्ये, ∠OQS = 90° .......[रेख OP ⊥ जीवा RS]

∴ OS2 = OQ2 + QS2  .......[पायथागोरसचे प्रमेय] 

∴ r2 = `(1/2 "r")^2 + 6^2`

∴ r2 = `1/4 "r"^2 + 36`

∴ r2 - `1/4 "r"^2` = 36

∴ `3/4 "r"^2 = 36`

∴ r2 = `(36 xx 4)/3`  ∴ r2 = 48

∴ r = `sqrt(48)`

= `4sqrt3` सेमी  ............[दोन्ही बाजूंचे वर्गमूळ घेऊन]

∴ दिलेल्या वर्तुळाची त्रिज्या `4sqrt3` सेमी आहे.

shaalaa.com
स्पर्शिका - त्रिज्या प्रमेय
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: वर्तुळ - संकीर्ण प्रश्नसंग्रह 3 [पृष्ठ ८६]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 3 वर्तुळ
संकीर्ण प्रश्नसंग्रह 3 | Q 9. | पृष्ठ ८६

संबंधित प्रश्न

त्रिज्या 4.5 सेमी असलेल्या वर्तुळाच्या दोन स्पर्शिका परस्परांना समांतर आहेत. तर त्या स्पर्शिकांतील अंतर किती हे सकारण लिहा.


आकृती मध्ये, केंद्र A व B असणारी वर्तुळे परस्परांना बिंदू E मध्ये स्पर्श करतात. रेषा l ही त्यांची सामाईक स्पर्शिका त्यांना अनुक्रमे C व D मध्ये स्पर्श करते. जर वर्तुळांच्या त्रिज्या अनुक्रमे 4 सेमी व 6 सेमी असतील, तर रेख CD ची लांबी किती असेल?


आकृती मध्ये, रेख EF हा व्यास आणि रेख DF हा स्पर्शिकाखंड आहे. वर्तुळाची त्रिज्या r आहे. तर सिद्ध करा - DE × GE = 4r

 


एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?


आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.

(1) MT = किती?

(2) MN = किती?

(3) ∠NSM = किती?

 


शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 


शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा. 


सोबतच्या आकृतीमध्ये, केंद्र C असलेल्या वर्तुळात रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते, तर ∠CAB चे माप किती अंश आहे? का? 

 


वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.

पक्ष: `square`

साध्य: `square`

सिद्धता:  

त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.

ΔPAD आणि ΔQAD यांमध्ये,

बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]

बाजू AD ≅ बाजू AD ...............[`square`]

∠APD ≅ ∠AQD = 90°  ............[स्पर्शिका-त्रिज्या प्रमेय]

∴ ΔPAD ≅ ΔQAD ..................[`square`]

∴ बाजू DP ≅ बाजू DQ ...............[`square`]


वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:

∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×