हिंदी

Show that `(A-b)^2 , (A^2 + B^2 ) and ( A^2+ B^2) ` Are in Ap. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `(a-b)^2 , (a^2 + b^2 ) and ( a^2+ b^2) ` are in AP.

उत्तर

The given numbers are `(a-b)^2 , (a^2 + b^2 ) and ( a+ b^2) `

Now, 

`(a^2 + b^2 ) - (a-b)^2 = a^2 + b^2 - (a^2 -2ab + b^2 ) = a^2 + b^2 - a^2 + 2ab - b^2 = 2ab`

`(a+b)^2 - (a^2 + b^2) = a^2 + 2ab + b^2 - a^2 - b^2 = 2ab`

So, `(a^2 + b^2 ) - (a -b)^2 = (a + b)^2 - (a^2 + b^2 ) =2ab `    (Constant)
Since each term differs from its preceding term by a constant, therefore, the given numbers are in AP.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Arithmetic Progression - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 11 Arithmetic Progression
Exercises 2 | Q 5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×