Advertisements
Advertisements
प्रश्न
Show that the divergence of curl of a vector is zero.
टिप्पणी लिखिए
उत्तर
Let `bar(F) = F_x bar(a)_x + F_y bar(a)_y + F_z bar(a)_z`
`\bar(F) = ∇ xx bar(F) = [[a_x , a_y ,a_x],[∂/(∂x) , ∂/(∂y) , ∂/(∂z)],[F_x ,F_y ,F_z]]`
` =bar(a)_x xx ((∂F_x)/(∂_y) - (∂F_x)/(∂_z)) - bar(a)_y ((∂F_x)/(∂_x) - (∂F_x)/(∂_z))`
`+ bar(a)_z ((∂F_x)/(∂_x) - (∂F_x)/(∂_y))`
`" Now div (curl "bar(F)) = ∇ .(∇ xx bar(F))`
`= ∂/(∂_x) ((∂F_z)/(∂_y) - (∂F_y)/(∂_z)) - ∂/(∂_y) ((∂F_z)/(∂_x) - (∂F_y)/(∂_z))`
`+ ∂/(∂_z) ((∂F_Y)/(∂_x) -(∂F_x)/(∂_y))`
`= (∂^2F_x)/(∂_x∂_y) - (∂^2F_y)/(∂_x∂_z) - (∂^2F_z)/(∂_x∂_x)+(∂^2F_x)/(∂_y∂_z)`
` +(∂^2 F_y)/(∂_z∂_x) - (∂^2 F_x)/(∂_z "_+∂_y) = 0`
shaalaa.com
Curl and Divergence
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?