हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Show that f(x, y) = x2-y2y-1 s continuous at every (x, y) ∈ R2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x, y) = `(x^2 - y^2)/(y - 1)` s continuous at every (x, y) ∈ R2 

योग

उत्तर

Let (a, b) ∈ R2 be an arbitrary point.

We shall investigate the continuity of f at (a,b).

That is, we shall check if all the three conditions for continuity hold for f at (a, b)

To check first condition, note that

f(a, b) = `(a^2 + "b"^2)/("b"^2 + 1)` is defined

Next we want to find if `lim_((x,  y) ->("a",  "'b"))` f(x, y) exist or not

So we calculate `lim_((x,  y) -> ("a",  "b"))` x2 – y2 = a2 – b2 and `lim_((x,  y) -> ("a",  "b"))` y2 + 1 = b2 + 1

By the properties of limit we see that

`lim_((x,  y) -> ("a",  "b"))` f(x, y) = `(x^2 - y^2)/("b"^2 + 1)`

=`("a"^2 + "b"^2)/("b"^2 + 1)`

= f(a, b)

= L exists

Now, we note that `lim_((x,  y) -> ("a",  "b"))` f(x, y)

= L

= f(a, b).

Hence f satisfies all the there conditions for continuity of f at (a, b).

Since (a, b) is an arbitrary point in R2

We conclude that f is continuous at every point of R2

shaalaa.com
Limit and Continuity of Functions of Two Variables
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differentials and Partial Derivatives - Exercise 8.3 [पृष्ठ ७३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 8 Differentials and Partial Derivatives
Exercise 8.3 | Q 6 | पृष्ठ ७३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×