हिंदी

Show that fermi energy level in intrinsic semiconductor is at the Centre of forbidden energy gap. What is the probability of an electron being thermally excited to the conduction band in Si at 30℃. - Applied Physics 1

Advertisements
Advertisements

प्रश्न

Show that fermi energy level in intrinsic semiconductor is at the Centre of forbidden energy gap. What is the probability of an electron being thermally excited to the conduction band in Si at 30℃. The band gap energy is 1.12 eV.

संख्यात्मक

उत्तर

At any temperature T>0K in an intrinsic semiconductor a number of electrons are found in the conduction band and the rest of the valence electrons are left behind in the valence band.

N = nc + n

`f(E_C) = 1 /(1+e (E_C -E_F )/(kT))` ………………………(1)

`f(E_v) =1 / ( 1+e -(E_C -E_F )/(kT))` ………………………(2)

`n_V = Nf(E_v) = N/( 1+e-(E_C-E_F)/(kT))`

`N = N /(+ 1+e-(E_C-E_F)/(kT)) + N/(1+e (E_C -E_F )/(kT))`

`1= 1/( 1+e-(E_C-E_F)/(kT)) + 1/(1+e(E_C -E_F )/(kT)`

`1 =( (2+e(E_C -E_F )/(kT)) +e( -(E_C -E_F ))/(kT))/([1+e(E_C - E_F )/(kT)][1+e-(E_C -E_F )/(kT))]` 

Solving above equation using cross multiplication method.
e(EC-2EF+EV)/kT = 1 


`(E_C-2E_F+E_V )/(kT) `= 0


`E_F =(E_C+E_V_)/ 2`
Hence it is proved that fermi energy level in intrinsic semiconductor is at the Centre of forbidden energy gap.
NUMERICAL:-
Given Data :- T = 30℃ =  303K     Eg = 1.12e

`K = 1.38^( -23) "J/K "=  (1.38 ×10^(-23) )/( 1.6 ×10^(-19)) = 86.25×10^(-6)" eV/K"`

Formula :-  `f(E_C) = 1/(1+e (E_C -E_F )/(kT)`

Calculations :- Si is an intrinsic semiconductor. Hence,

`E_C - E_F = ( E_g)/2  = 0.56 eV `

`f(E_C ) = 1/( 1+exp ( (0.56)/( 86.25×10^(-6)×303)))= 4.9×10^(-10)`

probability = 4.9×10-10

 

shaalaa.com
Fermi Energy Level in Intrinsic Semiconductors
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (December) CBCGS
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Course
Use app×