हिंदी

Show that the Sequence Defined By An = 3n2 − 5 is Not an A.P - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the sequence defined by an = 3n2 − 5 is not an A.P

उत्तर

In the given problem, we need to show that the given sequence is not an A.P

Here,

an = 3n2 − 5

Now, first, we will find its few terms by substituting  n = 1, 2, 3,4,5

so

Substituting = 1we get

`a_1 = 3(1)^2 - 5`

`a_1 = -2`

Substituting = 2we get

`a_2 = 3(2)^2 - 5`

`a_2 = 7`

Substituting = 3, we get

`a_3 = 3(3)^2 - 5`

`a_3 = 22`

Substituting = 4we get

`a_4 = 3(5)^2 - 5`

`a_4 = 43`

Substituting = 5we get

`a_5 = 3(5)^2  - 5`

`a_5 = 70`

Further, for the given sequence to be an A.P,

We find the common difference (d)  = `a_2 - a_1 - a_3 - a_2`

Thus

`a_2 - a_1 = 7 - (-2)`

= 9

Also

`a_3 - a_2 = 22 -7`

= 15

So,`a_2 - a_1 != a_3 - a_2`

Hence, the given sequence is not an A.P.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithmetic Progression - Exercise 5.2 [पृष्ठ ८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.2 | Q 2 | पृष्ठ ८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×