Advertisements
Advertisements
प्रश्न
Solve `\frac { 2 }{ x } + \frac { 1 }{ 3y } = \frac { 1}{ 5 }; \frac { 3 }{ x } + \frac { 2 }{ 3y } = 2` and also find ‘a’ for which y = ax – 2
उत्तर
Considering 1/x = u and 1/y = v, the given system of equations becomes
`2u + \frac { v }{ 3 } = \frac { 1 }{ 5 }`
`⇒ \frac { 6u+v }{ 3 } = \frac { 1 }{ 5 }`
30u + 5v = 3 ….(1)
`3u + \frac { 2v }{ 3 } = 2 ⇒ 9u + 2v = 6 ….(2)`
Multiplying equation (1) with 2 and equation (2) with 5, we get
60u + 10v = 6 ….(3)
45u + 10v = 30 ….(4)
Subtracting equation (4) from equation (3), we get
15u = – 24
`u = -\frac { 24 }{ 15 } = -\frac { 8 }{ 5 }`
Putting `u = -\frac { 8 }{ 5 }` in equation (2), we get;
`9 × \frac { -8 }{ 5 } + 2v = 6`
`⇒ \frac { -72 }{ 5 } + 2v = 6`
`⇒ 2v = 6 + \frac { 72 }{ 5 } = \frac { 102 }{ 5 }`
`⇒ v = \frac { 51 }{ 5 }`
Here `\frac { 1 }{ x } = u = \frac { -8 }{ 5 }`
`⇒ x = \frac { -5 }{ 8 }`
And, `\frac { 1 }{ y } = v = \frac { 51 }{ 5 } ⇒ y = ⇒ \frac { 5 }{ 51 }`
Putting ` x = \frac { -5 }{ 8 } and y = \frac { 5 }{ 51 }` in y = ax – 2,
we get;
`\frac { 5 }{ 51 } = \frac { -5a }{ 8 } – 2`
`\frac { 5a }{ 8 } = – 2 – \frac { 5 }{ 51 } = \frac { -102-5 }{ 51} = \frac { -107 }{ 51 }`
`a = \frac { -107 }{ 51 } × \frac { 8 }{ 5 } = \frac { -856 }{ 255 }`
`a = \frac { -856 }{ 255 }`