Advertisements
Advertisements
प्रश्न
Solve the following equation and also check your result:
\[\frac{7y + 2}{5} = \frac{6y - 5}{11}\]
योग
उत्तर
\[\frac{7y + 2}{5} = \frac{6y - 5}{11}\]
\[\text{ or }77y + 22 = 30y - 25\]
\[\text{ or }77y - 30y = - 25 - 22\]
\[\text{ or }47y = - 47\]
\[\text{ or }y = \frac{- 47}{47} = - 1\]
\[\text{ Verification: }\]
\[\text{ L . H . S . }= \frac{- 7 + 2}{5} = \frac{- 5}{5} = - 1\]
\[\text{ R . H . S . }= \frac{- 6 - 5}{11} = \frac{- 11}{11} = - 1\]
\[\text{ or }77y + 22 = 30y - 25\]
\[\text{ or }77y - 30y = - 25 - 22\]
\[\text{ or }47y = - 47\]
\[\text{ or }y = \frac{- 47}{47} = - 1\]
\[\text{ Verification: }\]
\[\text{ L . H . S . }= \frac{- 7 + 2}{5} = \frac{- 5}{5} = - 1\]
\[\text{ R . H . S . }= \frac{- 6 - 5}{11} = \frac{- 11}{11} = - 1\]
∴ L.H.S.H.S. for y = -1
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Solve the following equation and also verify your solution:
\[\frac{5x}{3} + \frac{2}{5} = 1\]
Solve the following equation and also verify your solution:
\[\frac{2x}{3} - \frac{3x}{8} = \frac{7}{12}\]
Solve the following equation and also check your result:
\[\frac{7x - 1}{4} - \frac{1}{3}\left( 2x - \frac{1 - x}{2} \right) = \frac{10}{3}\]
Find a positive value of x for which the given equation is satisfied:
\[\frac{x^2 - 9}{5 + x^2} = - \frac{5}{9}\]
Solve: b + 2.5 = 4.2
Solve: a + 8.9 = - 12.6
Solve: p - 5.4 = 2.7
Solve: 4a - 3 = - 27
Solve: 2y – 5 = -11
Linear equation in one variable has ______