Advertisements
Advertisements
प्रश्न
Solve each of the following system of equations by eliminating x (by substitution) :
(i) x + y = 7
2x – 3y = 11
(ii) x + y = 7
12x + 5y = 7
(iii) 2x – 7y = 1
4x + 3y = 15
(iv) 3x – 5y = 1
5x + 2y = 19
(v) 5x + 8y = 9
2x + 3y = 4
उत्तर
(i) We have,
x + y = 7 ….(1)
2x – 3y = 11 ….(2)
We shall eliminate x by substituting its value from one equation into the other. from equaton (1), we get
x + y = 7
⇒ x = 7 – y
Substituting the value of x in equation (2), we get
2 × (7 – y) – 3y = 11
⇒ 14 – 2y – 3y = 11
⇒ –5y = – 3 or, y = 3/5
Now, substituting the value of y in equation (1), we get
x + 3/5 = 7 ⇒ x = 32/5.
Hence, x = 32/5 and y = 3/5
(ii) We have,
x + y = 7 ….(1)
12x + 5y = 7 ….(2)
From equation (1), we have
x + y = 7 ⇒ x = 7 – y
Substituting the value of y in equation (2), we get
⇒ 12(7 – y) + 5y = 7
⇒ 84 – 12y + 5y = 7
⇒ –7y = – 77
⇒ y = 11
Now, Substituting the value of y in equation (1), we get
x + 11 = 7 ⇒ x = – 4
Hence, x = – 4, y = 11.
(iii) We have,
2x – 7y = 1 ….(1)
4x + 3y = 15 ….(2)
From equation (1), we get
`2x – 7y = 1 ⇒ x = \frac{7y+1}{2}`
Substituting the value of x in equation (2), we get ;
`\Rightarrow 4\times \frac{7y+1}{2}+3y=15`
`\Rightarrow \frac{28y+4}{2}+3y=15`
⇒ 28y + 4 + 6y = 30
`⇒ 34y = 26 ⇒ y = \frac{13}{17}`
Now, substituting the value of y in equation (1), we get
`2x – 7 × \frac{13}{17} = 1`
`⇒ 2x = 1 + \frac{91}{17} = \frac{108}{17} ⇒ x =\frac{108}{34} = \frac{54}{17}`
Hence,
`x = \frac{54}{17} , y = \frac{13}{17}`
(iv) We have,
3x – 5y = 1 …. (1)
5x + 2y = 19 …. (2)
From equation (1), we get;
`3x – 5y = 1 ⇒ x = \frac{5y+1}{3}`
Substituing the value of x in equation (2), we get
`⇒ 5 × \frac{5y+1}{3} + 2y = 19`
`⇒ 25y + 5 + 6y = 57 ⇒ 31y = 52`
Thus, `y = \frac{52}{31}`
Now, substituting the value of y in equation (1), we get
`3x – 5 × \frac{52}{31} = 1`
`⇒ 3x – \frac{260}{31} = 1 ⇒ 3x = \frac{291}{31}`
`⇒ x = \frac{97}{31}`
Hence, ` x = \frac{97}{31} , y = \frac{52}{31}`
(v) We have,
5x + 8y = 9 ….(1)
2x + 3y = 4 ….(2)
From equation (1), we get
`5x + 8y = 9 ⇒ x = \frac{9-8y}{5}`
Substituting the value of x in equation (2), we get
`⇒ 2 × \frac{9-8y}{5} + 3y = 4`
⇒ 18 – 16y + 15y = 20
⇒ –y = 2 or y = – 2
Now, substituting the value of y in equation (1), we get
5x + 8 (–2) = 9
5x = 25 ⇒ x = 5
Hence, x = 5, y = – 2.