Advertisements
Advertisements
प्रश्न
Solve the following equation and verify your answer:
उत्तर
\[ \left( \frac{x + 1}{x + 2} \right)^2 = \frac{x + 2}{x + 4}\]
\[\text{ or }\frac{x^2 + 2x + 1}{x^2 + 4x + 4} = \frac{x + 2}{x + 4}\]
\[\text{ or }x^3 + 2 x^2 + x + 4 x^2 + 8x + 4 = x^3 + 4 x^2 + 4x + 2 x^2 + 8x + 8 [\text{ After cross multiplication }]\]
\[\text{ or }x^3 - x^3 + 6 x^2 - 6 x^2 + 9x - 12x = 8 - 4\]
\[\text{ or }- 3x = 4\]
\[\text{ or }x = \frac{4}{- 3} = \frac{- 4}{3}\]
\[\text{ Thus, }x = \frac{- 4}{3}\text{ is the solution of the given equation .} \]
\[\text{ Check: }\]
\[ \text{ Substituting }x = \frac{- 4}{3}\text{ in the given equation, we get: }\]
\[\text{ L . H . S . }= \left( \frac{\frac{- 4}{3} + 1}{\frac{- 4}{3} + 2} \right)^2 = \left( \frac{- 4 + 3}{- 4 + 6} \right)^2 = \frac{1}{4}\]
\[\text{ R . H . S . }= \frac{\frac{- 4}{3} + 2}{\frac{- 4}{3} + 4} = \frac{- 4 + 6}{- 4 + 12} = \frac{2}{8} = \frac{1}{4}\]
\[ \therefore\text{ L . H . S . = R . H . S . for }x = \frac{- 4}{3}\]
APPEARS IN
संबंधित प्रश्न
Solve the following equation and verify your answer:
Solve: x + 4 = - 3
Solve: a + 8.9 = - 12.6
Solve: y - `3 1/2` = 6
Solve: 3x = 12
Solve: − 5 = a + 3
Solve: `"b"/1.6 + 3 = - 2.5`
Solve: `"m"/4 - 4.6 = - 3.1`
Solve: `"z"/6 = - 1 2/3`
Solve: 2y – 5 = -11