Advertisements
Advertisements
प्रश्न
Solve the following system of linear equations graphically; 3x + y – 11 = 0; x – y – 1 = 0 Shade the region bounded by these lines and also y-axis. Then, determine the areas of the region bounded by these lines and y-axis.
उत्तर
We have,
3x + y – 11 = 0 and x – y – 1 = 0
(a)Graph of the equation 3x + y – 11 = 0
We have, 3x + y – 11 = 0
⇒ y = – 3x + 11
When, x = 2, y = –3 × 2 + 11 = 5
When, x = 3, y = – 3 × 3 + 11 = 2
Plotting the points P (2, 5) and Q(3, 2) on the graph paper and drawing a line joining between them, we get the graph of the equation 3x + y – 11 = 0 as shown in fig.
(b) Graph of the equation x – y – 1 = 0
We have,
x – y – 1 = 0
y = x – 1
When, x = – 1, y = –2
When, x = 3, y = 2
Plotting the points R(–1, –2) and S(3, 2) on the same graph paper and drawing a line joining between them, we get the graph of the equation x – y – 1 = 0 as shown in fig.
You can observe that two lines intersect at Q(3, 2). So, x = 3 and y = 2. The area enclosed by the lines represented by the given equations and also the y-axis is shaded.
So, the enclosed area = Area of the shaded portion
= Area of ∆QUT = 1/2 × base × height
= 1/2 × (TU × VQ) = 1/2 × (TO + OU) × VQ
= 1/2 (11 + 1) 3 = 1/2 × 12 × 3 = 18 sq.units.
Hence, required area is 18 sq. units.