हिंदी

Solve the following assignment problem to maximization: 1 2 3 4 5 I 18 19 22 20 18 II 24 21 23 18 22 III 19 20 20 21 23 IV 20 18 21 19 22 V 23 22 23 19 21 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following assignment problem to maximization:

  I II III IV V
1 18 24 19 20 23
2 19 21 20 18 22
3 22 23 20 21 23
4 20 18 21 19 19
5 18 22 23 22 21

Step - I

Subtract the Smallest element of each row from every element of that row

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 3
4 2 0 3 1 1
5 0 4 5 4 3

Step - II

Subtract the smallest element of each column from every element of that column:

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 2
4 2 0 3 1 0
5 0 4 5 4 2

Step - III

Draw minimum number of lines covering all zeros.

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 2
4 2 0 3 1 0
5 0 4 5 4 2

Step - 1V

The smallest uncovered element is 1, which is to be subtracted from all uncovered elements and add it to all elements which lie at the intersection of two lines:

  I II III IV V
1 0 5 0   3
2 2 3 2 0 3
3 3 3 0   2
4 3 0 3 1 0
5 0 3 4 3  

Step - V

Draw minimum number of lines that are required to cover all zeros:

  I II III IV V
1 0 5 0 1 3
2 2 3 2 0 3
3 3 3 0 1 2
4 3 0 3 1 0
5 0 3 4 3 1

Here minimum number of Lines = order of matrix.

Step - VI

Find smallest uncovered element (1). Subtract this number from all uncovered elements and add it to all elements which lie at the intersection of two lines:

  I II III IV V
1 0 4 0 0 2
2 3 3 3 0 3
3 3   0 0  
4 3 0 3 1 0
5 0 2 4 3 0

Now minimium number of lines = order of matrix.

The optimal assignment can be made.

Optimal solution is

1 → I

2 → IV

3 → `square`

4 → `square`

5 → V

Minimum value = `square`

रिक्त स्थान भरें
योग

उत्तर

Step - I

Subtract the Smallest element of each row from every element of that row

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 3
4 2 0 3 1 1
5 0 4 5 4 3

Step - II

Subtract the smallest element of each column from every element of that column:

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 2
4 2 0 3 1 0
5 0 4 5 4 2

Step - III

Draw minimum number of lines covering all zeros.

  I II III IV V
1 0 6 1 2 4
2 1 3 2 0 3
3 2 3 0 1 2
4 2 0 3 1 0
5 0 4 5 4 2

Step - 1V

The smallest uncovered element is 1, which is to be subtracted from all uncovered elements and add it to all elements which lie at the intersection of two lines:

  I II III IV V
1 0 5 0 1 3
2 2 3 2 0 3
3 3 3 0 1 2
4 3 0 3 1 0
5 0 3 4 3 1

Step - V

Draw minimum number of lines that are required to cover all zeros:

  I II III IV V
1 0 5 0 1 3
2 2 3 2 0 3
3 3 3 0 1 2
4 3 0 3 1 0
5 0 3 4 3 1

Here minimum number of Lines = order of matrix.

Step - VI

Find smallest uncovered element (1). Subtract this number from all uncovered elements and add it to all elements which lie at the intersection of two lines:

  I II III IV V
1 0 4 0 0 2
2 3 3 3 0 3
3 3 2 0 0 1
4 3 0 3 1 0
5 0 2 4 3 0

Now minimium number of lines = order of matrix.

The optimal assignment can be made.

Optimal solution is

1 → I (Value = 18)

2 → IV (Value = 18)

3 → III (Value = 20)

4 → II (Value = 18)

5 → V (Value =  21)

Minimum value = 18 + 18 + 20 + 18 + 21 = 95

∴ Minimum value = 95

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×