Advertisements
Advertisements
प्रश्न
Solve the following equation using the formula:
`(2x + 3)/(x + 3) = (x + 4)/(x + 2)`
उत्तर
`(2x + 3)/(x + 3) = (x + 4)/(x + 2)`
`\implies` (2x + 3)(x + 2) = (x + 3)(x + 4)
`\implies` 2x2 + 4x + 3x + 6 = x2 + 4x + 3x + 12
`\implies` x2 – 6 = 0
Here a = 1, b = 0 and c = – 6
Then `x =(-b +- sqrt(b^2 - 4ac))/(2a)`
= `(-(0) +- sqrt((0)^2 - 4(1)(-6)))/(2(1))`
= `(0 +- sqrt(24))/2`
= `(0 +- 2sqrt(6))/2`
= `-sqrt(6)` and `sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Check whether the following is quadratic equation or not.
3x2 - 5x + 9 = x2 - 7x + 3
Solve `2x^2 - 1/2 x = 0`
`2x^2-x+1/8=0`
`4/x-3=5/(2x+3),x≠0,-3/2`
`3^((x+2))+3^(-x)=10`
The sum of the square of the 2 consecutive natural numbers is 481. Find the numbers.
If 3 and –3 are the solutions of equation ax2 + bx – 9 = 0. Find the values of a and b.
Solve equation using factorisation method:
`9/2 x = 5 + x^2`
Solve:
(x2 – 3x)2 – 16(x2 – 3x) – 36 = 0
Solve :
`2x - 3 = sqrt(2x^2 - 2x + 21)`