Advertisements
Advertisements
प्रश्न
Solve the following equations graphically :
2x + 4y = 7
3x + 8y = 10
उत्तर
2x + 4y = 7
3x + 8y = 10
2x + 4y = 7 _________(1)
3x + 8y = 10 ________(2)
Now, 2x + 4y = 7
⇒ 4y = 7 - 2x
⇒ y = `(7 - 2x)/(4)`
Corresponding values of x and y can be tabulated as :
x | 2 | 3 | 4 |
y | 0.75 | 0.25 | -0.25 |
Plotting points (2, 0.75), (3, 0.25), (3, 0.25), (4, -0.25) and joining them, we get a line l1 which is the graph of equation (1).
Again, 3x + 8y = 10
⇒ x = `(10 - 8y)/(3)`
Corresponding values of x and y can be tabulated as :
x | 6 | -2 | 0 |
y | -1 | 2 | 1.25 |
Plotting points (6, 1), (2, 2), (0, 1.25) and joining them, we get a line l2 which is the graph of equation (2).
The two lines l1 and l2 intersect at the point (4, -0.25), i.e., `(4,-1/4)`.
Hence x = 4 and y = `(-1)/(4)` is the unique solution of the given equations.
APPEARS IN
संबंधित प्रश्न
The cost of manufacturing x articles is Rs. (50 + 3x). The selling price of x articles is Rs. 4x.
On a graph sheet, with the same axes, and taking suitable scales draw two graphs, first for the cost of manufacturing against no. of articles and the second for the selling price against the number of articles.
Use your graph to determine:
No. of articles to be manufactured and sold to break even (no profit and no loss).
Find graphically, the vertices of the triangle whose sides have the equations 2y - x = 8; 5y - x = 14 and y - 2x = 1 respectively. Take 1 cm = 1 unit on both the axes.
Solve the following equations graphically :
x + 3y = 8
3x = 2 + 2y
Solve the following equations graphically :
x + 4y + 9 = 0
3y = 5x - 1
Solve the following equations graphically :
x = 4
`(3x)/(3) - y = 5`
Solve the following equations graphically :
x+ 2y - 7 = 0
2x - y - 4 = 0
Solve the following system of equations graphically
x - y + 1 = 0
4x + 3y = 24
Draw the graph of the following equations :
3x + 2y + 6 = 0
3x + 8y - 12 = 0
Also, determine the co-ordinates of the vertices of the triangle formed by these lines and x-axis.
Solve graphically
`x/2 + y/4` = 1, `x/2 + y/4` = 2
Solve graphically
y = 2x + 1, y + 3x – 6 = 0