हिंदी

Solve the following Linear Programming problem graphically: Maximie Z = 300x + 600ySubject to x + 2y ≤ 122x + y ≤ 12x + 54y ≥ 5x ≤ 0, y ≥ 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following Linear Programming problem graphically:

Maximie Z = 300x + 600y
Subject to  x + 2y ≤ 12
2x + y ≤ 12
x + `5/4`y ≥ 5
x ≤ 0, y ≥ 0.

योग

उत्तर

Since Z = 300x + 600y 

x + 2y ≤ 12

2x + y ≤ 12

x + `5/4`y ≥ 5

x ≤ 0, y ≥ 0

Now, x + 2y = 12     2x + y = 12

x 0 12 4
y 6 0 4

 

x 0 6 4
y 12 0 4

`x + 5/4 y = 5`

x 0 5
y 4 0

Corner point z = 300x + 600y
A(5, 0) z = 1500
B(6, 0) z = 1800
C(4, 4) z = 3600 Maximum
D(0, 6) z = 3600 Maximum
E(0, 4) z = 2400

The maximum of objective function at two points at (4, 4) and (0, 6).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Delhi Set - 2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×