हिंदी

Solve the Following Question and Mark the Best Possible Option. If A, B, C > 0, Then Find the Minimum Value of (A + B + C)(1/(A + B) + 1/(B + C) + 1/(C + A)). -

Advertisements
Advertisements

प्रश्न

Solve the following question and mark the best possible option.
If a, b, c > 0, then find the minimum value of (a + b + c)`(1/(a + b) + 1/(b + c) + 1/(c + a))`.

विकल्प

  • `7/2`

  • 4

  • `9/2`

  • None of these

MCQ
योग

उत्तर

We have AM ≥ GM
⇒ `(1/(a + b) + 1/(b + c) + 1/(c + a)) ≥ 3 root(3)(1/(a + b) xx 1/(b + c) xx 1/(c + a))`   ...(1)

And (a + b) + (b + c) + (c + a) ≥ 3 `root(3)((a + b)(b + c)(c + a))`
Hence
`{(a + b) + (b + c) + (c + a)} (1/(a + b) + 1/(b + c) + 1/(c + a)) ≥ 3 root(3)(1/(a + b) xx 1/(b + c) xx 1/(c + a)) xx 3 root(3)((a + b)(b + c)(c + a))`

Solving we get `2(a + b + c)(1/(a + b) + 1/(b + c) + 1/(c + a)) ≥ 9`,

⇒ `(a + b + c)(1/(a + b) + 1/(b + c) + 1/(c + a)) ≥ 9/2`

Hence the minimum value is `9/2`.

shaalaa.com
Number System (Entrance Exam)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×