Advertisements
Advertisements
प्रश्न
Solve the given inequation and graph the solution on the number line.
2y – 3 < y + 1 ≤ 4y + 7, y ∈ R
उत्तर
2y – 3 < y + 1 ≤ 4y + 7, y ∈ R
`\implies` 2y – 3 – y < y + 1 – y ≤ 4y + 7 – y
`\implies` y – 3 < 1 ≤ 3y + 7
`\implies` y – 3 < 1 and 1 ≤ 3y + 7
`\implies` y < 4 and 3y ≥ –6
`\implies` y ≥ –2
`\implies` –2 ≤ y < 4
The graph of the given equation can be represented on a number line as:
APPEARS IN
संबंधित प्रश्न
If P = { x : -3 < x ≤ 7, x ∈ R} and Q = { x : - 7 ≤ x < 3, x ∈ R} , represent the following solution set on the different number lines:
P-Q
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P ∩ Q
If P = {x : 7x - 2 > 4x + 1, x ∈ R} and Q = {x : 9x - 45 ≥ 5 (x -5),x ∈ R} , represent the following solution set on different number lines:
P ∩ Q'
If P = {x : 7x - 4 > 5x + 2, x ∈ R} and Q - {x : x - 19 ≥ 1 - 3x, x ∈ R}, represent the following solution set on different number lines:
P' ∩ Q
List the solution set of 30 – 4 (2.x – 1) < 30, given that x is a positive integer.
Solve : 2 (x – 2) < 3x – 2, x ∈ { – 3, – 2, – 1, 0, 1, 2, 3} .
Solve: `(2x - 3)/(4) ≥ (1)/(2)`, x ∈ {0, 1, 2,…,8}
List the solution set of the inequation `(1)/(2) + 8x > 5x -(3)/(2)`, x ∈ Z
If x ∈ I, then the solution set of the inequation 1 < 3x + 5 ≤ 11 is
Given, `x + 2 ≤ x/3 + 3` and x is a prime number. The solution set for x is ______.