Advertisements
Advertisements
प्रश्न
Solve the inequation `("2x" + 1)/3 + 15 ≤ 17;` x ∈ W.
उत्तर
`("2x" + 1)/3 + 15 ≤ 17`; x ∈ W
`=> ("2x" + 1)/3 ≤ 17 - 15 = 2`
⇒ 2x + 1 ≤ 6
⇒ 2x ≤ 5
⇒ x ≤ `5/2 = 2 1/2`
But x ∈ W
∴ x = 0, 1, 2
∴ Solution set is = {0, 1, 2}
APPEARS IN
संबंधित प्रश्न
If the replacement set is the set of natural numbers, solve: x + 1 ≤ 7
If the replacement set is the set of natural numbers, solve: 3x - 4 > 6
If the replacement set = {- 6,. - 3, 0, 3, 6, 9}; find the truth set of the following : 2x - 1 > 9
If the replacement set = {- 6,. - 3, 0, 3, 6, 9}; find the truth set of the following : 3x + 7 < 1
Solve : - 17 < 9y - 8; y ∈ Z.
Solve : `2/3"x" + 8 < 12; "x" ∈ "W"`
Solve: `-5 ("x" + 4) > 30 ; "x" ∈ "Z"`
Solve: 4x - 5 > 10 - x, x ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
Solve: 15 – 2(2x – 1) < 15, x ∈ Z.
Solve: `("2x" + 3)/5 > ("4x" - 1)/2`, x ∈ W.