Advertisements
Advertisements
प्रश्न
Solve `x^4-x^3+x^2-x+1=0.`
योग
उत्तर
`x^4-x^3+x^2-x+1=0`
Multiply the given eqn by (x+1),
`(x+1)(x^4-x^3+x^2-x+1)=0`
`x^5=(-1)`
But -1 = cos 𝝅+𝒊 𝒔𝒊𝒏 𝝅
`therefore x = [cospi+isinpi]^(1/5)`
But By De Moivres theorem ,
(𝐜𝐨𝐬 𝐱 + 𝐢 𝐬𝐢𝐧 𝐱)𝒏= cos nx + i sin nx
`therefore x=cos pi/5+isin pi/5`
Add period 2k𝝅 ,
`therefore x=cos(1+2k)(pi/5)+isin(1+2k)(pi/5)`
Where k = 0,1,2,3,4.
The roots of given eqn is given by ,
Put k = 0 `x_0=cos pi/5+isin pi/5=e^(pi/5)`
k = 1 `x_1=cos (3pi)/5+isin (3pi)/5=e^((3pi)/5)`
k = 2 `x_2=cos pi/1+isin pi/1=e^(pi/1)`
k = 3 `x_3=cos (7pi)/5+isin (7pi)/5=e^((7pi)/5)`
k = 4 `x_4=cos (9pi)/5+isin (9pi)/5=e^((9pi)/5)`
The roots of eqn are : `e^(pi/5),e^((3pi)/5),e^(pi/1),e^((7pi)/5),e^((9pi)/5)`.
shaalaa.com
D’Moivre’S Theorem
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?