हिंदी

Sum of the Area of Two Squares is 400 Cm2. If the Difference of Their Perimeters is 16 Cm, Find the Sides of Two Squares. - Mathematics

Advertisements
Advertisements

प्रश्न

Sum of the area of two squares is 400 cm2. If the difference of their perimeters is 16 cm, find the sides of two squares.

संक्षेप में उत्तर

उत्तर

Let the side of the smaller square be cm.
Perimeter of any square = (4 × side of the square) cm.

It is given that the difference of the perimeters of two squares is 16 cm.
Then side of the bigger square = \[\frac{16 + 4x}{4} = \left( 4 + x \right)\] cm.

According to the question,

\[x^2 + \left( 4 + x \right)^2 = 400\]

\[ \Rightarrow x^2 + 16 + x^2 + 8x = 400\]

\[ \Rightarrow 2 x^2 + 8x - 384 = 0\]

\[ \Rightarrow x^2 + 4x - 192 = 0\]

\[ \Rightarrow x^2 + 16x - 12x - 192 = 0\]

\[ \Rightarrow x(x + 16) - 12(x + 16) = 0\]

\[ \Rightarrow (x - 12)(x + 16) = 0\]

\[ \Rightarrow x - 12 = 0 \text { or } x + 16 = 0\]

\[ \Rightarrow x = 12 \text { or } x = - 16\]

Since, side of the square cannot be negative
Thus, the side of the smaller square is 12 cm.
and the side of the bigger square is (4 + 12) = 16 cm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.11 [पृष्ठ ७१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.11 | Q 8 | पृष्ठ ७१
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×