हिंदी

∫[tan(logx)+sec2(logx)]dx= ______ -

Advertisements
Advertisements

प्रश्न

`int[ tan (log x) + sec^2 (log x)] dx= ` ______

विकल्प

  • x sec (log x) + c

  • tan (log x) + c

  • sec (log x) + c

  • x tan (log x) + c

MCQ
रिक्त स्थान भरें

उत्तर

`int[ tan (log x) + sec^2 (log x)] dx= underline (x tan (log x) + c)`

Explanation:

Let `I= int[ tan (log x) + sec^2 (log x)] dx`

Put log x = t

⇒ x = et

⇒ dx = etdt

`therefore I = int e^t(tan t + sec^2t)dt`

`= e^t tan t + c`   `... [because int e^x [f(x) + f^'(x)dx = e^xf(x)+c]]`

= x tan (log x) + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×