हिंदी

The binding energy of a H-atom, considering an electron moving around a fixed nuclei (proton), is B = - (me^4)/(8n^2ε_0^2h^2). - Physics

Advertisements
Advertisements

प्रश्न

The binding energy of a H-atom, considering an electron moving around a fixed nuclei (proton), is B = `- (Me^4)/(8n^2ε_0^2h^2)`. (m = electron mass). If one decides to work in a frame of reference where the electron is at rest, the proton would be moving around it. By similar arguments, the binding energy would be

B = `- (Me^4)/(8n^2ε_0^2h^2)` (M = proton mass)

This last expression is not correct because ______.

विकल्प

  • n would not be integral.

  • Bohr-quantisation applies only to electron

  • the frame in which the electron is at rest is not inertial.

  • the motion of the proton would not be in circular orbits, even approximately.

MCQ
रिक्त स्थान भरें

उत्तर

The binding energy of a H-atom, considering an electron moving around a fixed nuclei (proton), is B = `- (Me^4)/(8n^2ε_0^2h^2)`. (m = electron mass). If one decides to work in a frame of reference where the electron is at rest, the proton would be moving around it. By similar arguments, the binding energy would be

B = `- (Me^4)/(8n^2ε_0^2h^2)` (M = proton mass)

This last expression is not correct because the frame in which the electron is at rest is not inertial.

Explanation:

In a hydrogen atom, electrons revolving around a fixed proton nucleus have some centripetal acceleration. Therefore its frame of reference is non-inertial. If the frame of reference, where the electron is at rest, the given expression is not true as it forms the non-inertial frame of reference.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Atoms - Exercises [पृष्ठ ७५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
अध्याय 12 Atoms
Exercises | Q 12.02 | पृष्ठ ७५

वीडियो ट्यूटोरियलVIEW ALL [2]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×