हिंदी

The Bohr model for the H-atom relies on the Coulomb’s law of electrostatics. Coulomb’s law has not directly been verified for very short distances of the order of angstroms. - Physics

Advertisements
Advertisements

प्रश्न

The Bohr model for the H-atom relies on the Coulomb’s law of electrostatics. Coulomb’s law has not directly been verified for very short distances of the order of angstroms. Supposing Coulomb’s law between two opposite charge + q1, –q2 is modified to |F| = `(q_1q_2)/((4πε_0)) 1/r^2, r ≥ R_0 = (q_1q_2)/(4πε_0) 1/R_0^2 (R_0/r)^ε, r ≤ R_0` Calculate in such a case, the ground state energy of a H-atom, if ε = 0.1, R0 = 1Å.

दीर्घउत्तर

उत्तर

Let us consider the case, when r  ≤ R0 = 1Å

Let ε = 2 + δ

F = `(q_1q_2)/(4πε_0) * R_0^δ/r^(2 + δ) = xR_0^δ/r^(2 + δ)`

Where, `(q_1q_2)/(4πε_0) = x = (1.6 xx 10^19)^2 xx 9 xx 10^9`

= `2.04 xx 10^-29 N  m^2`

The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons (Colombian force) provides the necessary centripetal force.

`(mv^2)/r = (xR_0^δ)/r^(2 + δ)` or `v^2 = (xR_0^δ)/(mr^(1 + δ)`  ......(i)

`mvr = nh ⇒ r = (nh)/(mv) = (nh)/m [m/(xR_0^δ)]^(1/2) r^((1 + δ)/2)`  ....[Applying Bhor's second postulates]

Solving this for r, we get `r_n = [(n^2h^2)/(mxR_0^δ)]^(1/(1 - δ))`

Where rn is the radius of nth orbit of the electron.

For n = 1 and substituting the values of constant, we get

`r_1 = [h^2/(mxR_0^δ)]^(1/(1 - δ)]`

⇒ `r_1 = [(1.05^2 xx 10^-68)/(9.1 xx 10^-31 xx 2.3 xx 10^-28 xx 10^+19)]^(1/29)`

= `8 xx 10^-11`

= 0.08 nm (< 0.1 nm)

This is the radius of orbit of electron in the ground state of hydrogen atom. Again using Bhor's second postulate, the speed of electron

`v_n = (nh)/(mr_n) = nh((mxR_0^δ)/(n^2h^2))^(1/(1 - δ)`

For n = 1, the speed of electron in ground state `v_1 = h/(mr_1) = 1.44 xx 10^6` m/s

The kinetic energy of electrons in the ground state

K.E. = `1/2 mv_1^2 - 9.43 xx 10^-19 J = 5.9  eV`

Potential energy of electron in the ground state till R0

U = `int_0^(R_0) Fdr = int_0^(R_0) x/r^2 dr = - x/R_0`

Potential energy from R0 to r, U = `int_(R_0)^r Fdr = int_(R_0)^r (xR_0^δ)/r^(2 + δ) dr`

U = `+  xR_0^δ int_(R_0)^δ (dr)/r^(2 + δ) = +  (xR_0^δ)/(- 1 - δ) [1/r^(1 + δ)]_(R_0)^r`

U = `(xR_0^δ)/(1 + δ) [1/r^(1 + δ) - 1/R_0^(1 + δ)] = - x/(1 + δ) [(R_0^δ)/r^(1 + δ) - 1/R_0]`

U = `- x[(R_0^δ)/r^(1 + δ) - 1/R_0 + (1 + δ)/R_0]`

U = `- x[(R_0^-19)/r^(-0.9) - 1.9/R_0]`

= `2.3/0.9 xx 10^-18 [(0.8)^0.9 - 1.9]J = - 17.3  eV`

Hence total energy of electron in ground state = (– 17.3 + 5.9) = – 11.4 eV

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Atoms - Exercises [पृष्ठ ८०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
अध्याय 12 Atoms
Exercises | Q 12.29 | पृष्ठ ८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×