Advertisements
Advertisements
प्रश्न
The data gives number of accidents per day on a railway track. Compute Q2, P17, and D7.
4, 2, 3, 5, 6, 3, 4, 1, 2, 3, 2, 3, 4, 3, 2.
उत्तर
The given data can be arranged in ascending order as follows:
1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 6
Here, n = 15
Q2 = value of `2(("n" + 1)/4)^"th"` observation
= value of `2((15 + 1)/4)^"th"` observation
= value of (2 x 4)th observation
= value of 8th observation
∴ Q2 = 3
P17 = value of `17(("n" + 1)/100)^"th"` observation
= value of `17((15 + 1)/100)^"th"` observation
= value of (17 x 0.16)th observation
= value of (2.72)th observation
= value of 2nd observation + 0.72 (value of 3rd observation – value of 2nd observation)
= 2 + 0.72 (2 – 2)
∴ P17 = 2
D7 = value of `7(("n" + 1)/10)^"th"` observation
= value of `7((15 + 1)/10)^"th"` observation
= value of (7 x 1.6)th observation
= value of (11.2)th observation
= value of 11th observation + 0.2 (value of 12th observation – value of 11th observation)
= 4 + 0. 2 (4 – 4)
∴ D7 = 4
APPEARS IN
संबंधित प्रश्न
The daily wages (in Rs.) of 15 laboures are as follows:
230, 400, 350, 200, 250, 380, 210, 225, 375, 180, 375, 450, 300, 350, 250
Calculate D8 and P90.
Calculate 2nd decide and 65th percentile for the following:
x | 80 | 100 | 120 | 145 | 200 | 280 | 310 | 380 | 400 | 410 |
f | 15 | 18 | 25 | 27 | 40 | 25 | 19 | 16 | 8 | 7 |
From the following data calculate the rent of 15th, 65th and 92nd house.
House rent (in ₹) | 11000 | 12000 | 13000 | 15000 | 14000 | 16000 | 17000 | 18000 |
No. of houses | 25 | 17 | 13 | 14 | 15 | 8 | 6 | 2 |
Calculate D4 and P48 from the following data:
Mid value | 2.5 | 7.5 | 12.5 | 17.5 | 22.55 | Total |
Frequency | 7 | 18 | 25 | 30 | 20 | 100 |
Calculate D9 and P20 of the following distribution.
Length (in inches) | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 – 120 |
No. of units | 1 | 14 | 35 | 85 | 90 | 15 |
The weekly profit (in rupees) of 100 shops are distributed as follows:
Profit per shop | No. of shops |
0 – 1000 | 10 |
1000 – 2000 | 16 |
2000 – 3000 | 26 |
3000 – 4000 | 20 |
4000 – 5000 | 20 |
5000 – 6000 | 5 |
6000 – 7000 | 3 |
Find the limits of the profit of middle 60% of the shops.
In a particular factory, workers produce various types of output units.
The following distribution was obtained.
Output units Produced | No. of workers |
70 – 74 | 40 |
75 – 79 | 45 |
80 – 84 | 50 |
85 – 89 | 60 |
90 – 94 | 70 |
95 – 99 | 80 |
100 – 104 | 100 |
Find the percentage of workers who have produced less than 82 output units.
The distribution of daily sales of shoes (size-wise) for 100 days from a certain shop is:
Size of shoes | 2 | 4 | 3 | 5 | 7 | 6 | 8 |
No. of days | 14 | 20 | 13 | 19 | 13 | 13 | 8 |
Compute Q2, D1, and P95.
In the frequency distribution of families given below, the number of families corresponding to expenditure group 2000 - 4000 is missing from the table. However value of 25th percentile is 2880. Find the missing frequency.
Weekly Expenditure (₹1000) | 0 – 2 | 2 – 4 | 4 – 6 | 6 – 8 | 8 – 10 |
No. of families | 14 | ? | 39 | 7 | 15 |
Calculate Q1, D6, and P15 for the following data:
Mid value | 25 | 75 | 125 | 175 | 225 | 275 |
Frequency | 10 | 70 | 80 | 100 | 150 | 90 |
Daily income for a group of 100 workers are given below:
Daily income (in₹) | 0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 |
No. of persons | 7 | ? | 25 | 30 | ? |
P30 for this group is ₹ 110. Calculate the missing frequencies.
The distribution of a sample of students appearing for a C.A. examination is:
Marks | 0 – 100 | 100 – 200 | 200 – 300 | 300 – 400 | 400 – 500 | 500 – 600 |
No. of students | 130 | 150 | 190 | 220 | 280 | 130 |
Help C.A. institute to decide cut-off marks for qualifying an examination when 3% of students pass the examination.