हिंदी

The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: -

Advertisements
Advertisements

प्रश्न

The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:

विकल्प

  • ellipses of constant eccentricity

  • ellipses of variable eccentricity

  • hyperbolas of constant eccentricity

  • hyperbolas of variable eccentricity

MCQ

उत्तर

hyperbolas of variable eccentricity

Explanation:

Given `(x  dx)/(1 + x^2) = (y  dy)/(1 + y^2)`

Integrating we get, `1/2 log(1 + x^2) = 1/2 log(1 + y^2) + a`

⇒ `1 + x^2 = c(1 + y^2)`, where c = e2a

`x^2 - cy^2 = c` = 1

⇒ `x^2/(c - 1) - y^2/(((c - 1)/c))` = 1  ......(i)

Clearly c > 0 as c = e2a

Hence, the equation (i) gives a family of hyperbolas with eccentricity = `sqrt((c - 1 + (c - 1)/c)/(c - 1)) = sqrt((c^2 - 1)/(c - 1)) = sqrt(c + 1)` if c ≠ 1.

Thus eccentricity varies from member to member of the family as it depends on c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×