Advertisements
Advertisements
प्रश्न
The dimensions of an oil tin are 26 cm × 26 cm × 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of tin sheet used for these 20 tins.
उत्तर
\[\text{ Dimensions of the oil tin are 26 cm } \times 26 cm \times 45 cm . \]
\[\text { So, the area of tin sheet required to make one tin }= 2 \times (\text { length }\times \text { breadth + breadth } \times \text { height + length } \times \text { height) }\]
\[ = 2 \times (26 \times 26 + 26 \times 45 + 26 \times 45)\]
\[ = 2 \times (676 + 1170 + 1170) = 6032 {cm}^2 \]
\[\text { Now, area of the tin sheet required to make 20 such tins = 20 }\times \text { surface area of one tin }\]
\[ = 20 \times 6032\]
\[ = 120640 {cm}^2 \]
\[\text { It can be observed that 120640 } {cm}^2 = 120640 \times 1cm \times 1cm \]
\[ = 120640 \times \frac{1}{100}m \times \frac{1}{100}m ( \because 100 cm = 1 m)\]
\[ = 12 . 0640 m^2 \]
\[\text { Also, it is given that the cost of 1 } m^2 \text { of tin sheet = Rs 10 } \]
\[ \therefore\text { The cost of 12 . 0640 m^2 of tin sheet = 12 . 0640 } \times 10 =\text { Rs }120 . 6\]
APPEARS IN
संबंधित प्रश्न
How much clay is dug out in digging a well measuring 3 m by 2 m by 5 m?
If each edge of a cube, of volume V, is doubled, then the volume of the new cube is
If each edge of a cube is increased by 50%, the percentage increase in its surface area is
75 persons can sleep in a room 25 m by 9.6 m. If each person requires 16 m3 of the air; find the height of the room.
The total surface area of a cube is 216 cm2. Find its volume.
The internal length, breadth, and height of a closed box are 1 m, 80 cm, and 25 cm. respectively. If its sides are made of 2.5 cm thick wood; find :
(i) the capacity of the box
(ii) the volume of wood used to make the box.
A closed box is made of wood 5 mm thick. The external length, breadth and height of the box are 21 cm, 13 cm and 11 cm respectively. Find the volume of the wood used in making the box.
375 persons can be accommodated in a room whose dimensions are in the ratio of 6 : 4 : 1. Calculate the area of the four walls of the room if the each person consumes 64m3 of air.