Advertisements
Advertisements
प्रश्न
The distance between the lines `x/2 = y/(-1) = z/2` and `(x - 1)/2 = (y - 1)/(-1) = (z - 1)/2` is ______.
विकल्प
1 unit
`sqrt(3)` units
`sqrt(2)` units
2 units
उत्तर
The distance between the lines `x/2 = y/(-1) = z/2` and `(x - 1)/2 = (y - 1)/(-1) = (z - 1)/2` is `underlinebb(sqrt(2) units)`.
Explanation:
Given lines are
`x/2 = y/(-1) = z/2`
`\implies (x - 0)/2 = (y - 0)/(-1) = (z - 0)/2`
or r = `0hati + 0hatj + 0hatk + λ(2hati - hatj + 2hatk)` ...(i)
and `(x - 1)/2 = (y - 1)/(-1) = (z - 1)/2`
`\implies` r = `(hati + hatj + hatk) + μ(2hati - hatj + 2hatk)` ...(ii)
Now, distance between lines (i) and (ii) is given by
d = `|(b xx (a_2 - a_1))/|b||` ...(iii)
Now, a2 – a1 = `hati + hatj + hatk`
So, b × (a2 – a1) = `|(hati, hatj, hatk),(2, -1, 2),(1, 1, 1)| = -3hati + 3hatk`
and | b | = `sqrt(4 + 1 + 4)` = 3
From equation (iii),
∴ d = `|-3hati + 3hatk|/3`
= `(3sqrt(2))/2`
= `sqrt(2)`