Advertisements
Advertisements
प्रश्न
The equation of the line of regression of Y on X is 3x + 2y = 26 and X on Y is 6x + y = 31. Find Var. (X) if Var. (Y) = 36.
उत्तर
The regression line of Yon Xis 3x + 2y = 26
`=> "y" = (-3"x" + 26)/2`
`therefore "y" = -3/2 "x" + 26/2`
`therefore "b"_"yx" = "Coefficient of x" = (-3)/2`
The regression line of x on y is 6x + y = 31
⇒ 6x = -y + 31
⇒ `"x" = (-"y" + 31)/6`
`therefore "x" = -1/6 "y" + 31/6`
`therefore "b"_"xy" = "Coefficient of y" = (-1)/6`
Now `"b"_"yx" . "b"_"xy" = (-3/2)(-1/6) = 1/4 < 1`
`"r" = sqrt ("b"_"yx" . "b"_"xy") = sqrt (1/4) = +- 1/2`
Since byx and bxy both are negative
`therefore "r" = -1/2`
Given Var (Y) = 36
∴ σ2y = 36
∴ σ y = 6
Again bxy = r . `(sigma "x")/(sigma "y")`
`=> -1/6 = -1/2 xx (sigma "x")/6`
⇒ σ x = 2
∴ Var (X) = σ2x = (2)2 = 4