Advertisements
Advertisements
प्रश्न
The following table shows the income of farmers in a grape season. Find the mean of their income.
Income
(Thousand Rupees)
|
20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Farmers | 10 | 11 | 15 | 16 | 18 | 14 |
उत्तर
Class
(Income in thousand rupees) |
Class Mark xi |
Frequency (Number of farmers) fi |
Class mark × Frequency xifi |
20 - 30 | 25 | 10 | 250 |
30 - 40 | 35 | 11 | 385 |
40 - 50 | 45 | 15 | 675 |
50 - 60 | 55 | 16 | 880 |
60 - 70 | 65 | 18 | 1170 |
70 - 80 | 75 | 14 | 1050 |
\[\sum_{} f_i = 84\] | \[\sum_{} x_i f_i = 4410\] |
Mean = \[\frac{\sum_{} x_i f_i}{\sum_{} f_i}\]
= `4410/84`
= 52 . 5 thousand rupees
= 52500
Hence, the mean of the income is Rs 52500.
APPEARS IN
संबंधित प्रश्न
The mean of the following distribution is 18. Find the frequency f of class 19 – 21.
Class | 11-13 | 13-15 | 15-17 | 17-19 | 19-21 | 21-23 | 23-25 |
Frequency | 3 | 6 | 9 | 13 | f | 5 | 4 |
Find the value of p for the following distribution whose mean is 16.6
x | 8 | 12 | 15 | P | 20 | 25 | 30 |
f | 12 | 16 | 20 | 24 | 16 | 8 | 4 |
Find the missing value of p for the following distribution whose mean is 12.58
x | 5 | 8 | 10 | 12 | P | 20 | 25 |
f | 2 | 5 | 8 | 22 | 7 | 4 | 2 |
Find the missing frequency (p) for the following distribution whose mean is 7.68.
x | 3 | 5 | 7 | 9 | 11 | 13 |
f | 6 | 8 | 15 | P | 8 | 4 |
The following distribution gives the number of accidents met by 160 workers in a factory during a month.
No. of accidents(x) | 0 | 1 | 2 | 3 | 4 |
No. of workers (f) | 70 | 52 | 34 | 3 | 1 |
Find the average number of accidents per worker.
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 6 | 7 | 10 | 8 | 9 |
Find the mean of each of the following frequency distributions
Class interval | 0 - 6 | 6 - 12 | 12 - 18 | 18 - 24 | 24 - 30 |
Frequency | 7 | 5 | 10 | 12 | 6 |
Find the mean of each of the following frequency distributions
Class interval | 25 - 35 | 35 - 45 | 45 - 55 | 55 - 65 | 65 - 75 |
Frequency | 6 | 10 | 8 | 12 | 4 |
For the following distribution, calculate mean using all suitable methods:
Size of item | 1 - 4 | 4 - 9 | 9 - 16 | 16 - 27 |
Frequency | 6 | 12 | 26 | 20 |
There are three dealers A, B and C in Maharashtra. Suppose, the trade of each of them in september 2018 was as shown in the following table.
The rate of GST on each transaction was 5%.
Read the table and answer the questions below it.
Dealer | GST collected on the sale |
GST paid at the time of purchase |
ITC | Tax paid to the Govt. |
Taxbalance with the Govt. |
A | Rs.5000 | Rs. 6000 | Rs. 5000 | Rs. 0 | Rs. 1000 |
B | Rs 5000 | Rs. 4000 | Rs. 4000 | Rs. 1000 | Rs. 0 |
C | Rs.5000 | Rs. 5000 | Rs. 5000 | Rs. 0 | Rs. 0 |
(i) How much amount did the dealer A get by sale ?
(ii) For how much amount did the dealer B buy the articles ?
(iii) How much is the balance of CGST and SGST left with the government that was paid by A ?
Define mean.
Write the empirical relation between mean, mode and median.
The mean of n observation is `overlineX`. If the first observation is increased by 1, the second by 2, the third by 3, and so on, then the new mean is
If Σfi = 25 and Σfixi = 100, then find the mean (`bar"x"`)
There are 45 students in a class, in which 15 are girls. The average weight of 15 girls is 45 kg and 30 boys is 52 kg. Find the mean weight in kg of the entire class.
The marks obtained by a set of students in an examination all given below:
Marks | 5 | 10 | 15 | 20 | 25 | 30 |
Number of students | 6 | 4 | 6 | 12 | x | 4 |
Given that the mean marks of the set of students is 18, Calculate the numerical value of x.
In a small scale industry, salaries of employees are given in the following distribution table:
Salary (in Rs.) |
4000 - 5000 |
5000 - 6000 |
6000 - 7000 |
7000 - 8000 |
8000 - 9000 |
9000 - 10000 |
Number of employees |
20 | 60 | 100 | 50 | 80 | 90 |
Then the mean salary of the employee is?
There is a grouped data distribution for which mean is to be found by step deviation method.
Class interval | Number of Frequency (fi) | Class mark (xi) | di = xi - a | `u_i=d_i/h` |
0 - 100 | 40 | 50 | -200 | D |
100 - 200 | 39 | 150 | B | E |
200 - 300 | 34 | 250 | 0 | 0 |
300 - 400 | 30 | 350 | 100 | 1 |
400 - 500 | 45 | 450 | C | F |
Total | `A=sumf_i=....` |
Find the value of A, B, C, D, E and F respectively.
In the formula `barx = a + (f_i d_i)/f_i`, for finding the mean of grouped data di’s are deviations from a of ______.
The following table gives the number of pages written by Sarika for completing her own book for 30 days:
Number of pages written per day |
16 – 18 | 19 – 21 | 22 – 24 | 25 – 27 | 28 – 30 |
Number of days | 1 | 3 | 4 | 9 | 13 |
Find the mean number of pages written per day.