Advertisements
Advertisements
प्रश्न
The function `f(x) = x^3 - 6x^2 + 9x + 25` has
विकल्प
a maxima at x = 1 and a minima at x = 3
a maxima at x = 3 and a minima at x = 1
no maxima, but a minima at x = 1
a maxima at x = 1, but no minima
MCQ
उत्तर
a maxima at x = 1 and a minima at x = 3
Explanation:
`f(x) = x^3 - 6x^2 + 9x + 25`
`f^'(x) = 3x^2 - 12x + 9`
`f^('')(x) = 6x - 12`
To get the stationary points ⇒ `f^'(x)` = 0
∴ `3x^2 - 12x + 9` = 0
`x^2 - 4x + 3` = 0
`(x - 1)(x - 3)` = 0
`x = 1` or `x = 3`
To get the maxima and minima of a function,
`f^('')(x) = 6x - 12`
At `x = 1, f^('')(1) = 6(1) - 12 = 6 - 12 = - 6 < 0`
∴ Maxima of `f(x)` exists at `x` = 10.
At `x = 3, f^('')(3) = 6(3) - 12 = 18 - 12 = 6 > 0`.
∴ Minima of `f(x)` exists at `x` = 3.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?