Advertisements
Advertisements
प्रश्न
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
विकल्प
– x + (1 + x2) tan–1x + c
x – (1 + x2) cot–1x + c
– x + (1 + x2) cot–1x + c
x – (1 + x2) tan–1x + c
उत्तर
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to `underlinebb(-x + (1 + x^2) tan^-1x + c)`.
Explanation:
Let I = `int x cos^-1 ((1 - x^2)/(1 + x^2))dx`
∴ I = \[\ce{2 \int\underset{II}{x}. \underset{I}{tan}^{-1}x dx}\]
Applying Integration by parts
I = `2[tan^-1x int xdx - int(d/(dx) (tan^-1 x) intxdx)dx]`
I = `2[x^2/2 tan^-1 x - int 1/(1 + x^2) xx x^2/2 dx] + c`
I = `2[x^2/2 tan^-1 x - 1/2 int (x^2 + 1 - 1)/(x^2 + 1)dx] + c`
I = `2[x^2/2 tan^-1 x - 1/2 int (x^2 + 1)/(x^2 + 1)dx + 1/2 int 1/(1 + x^2) dx] + c`
I = `2[x^2/2 tan^-1 x - 1/2 int 1.dx + 1/2 tan^-1 x] + c`
I = `2[x^2/2 tan^-1 x - x/2 + 1/2 tan^-1 x] + c`
I = x2 tan–1 x + tan–1 x – x + c
or I = –x + (x2 + 1) tan–1 x + c