Advertisements
Advertisements
प्रश्न
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
विकल्प
`(- oo, oo)`
`(- 2, 0)`
`(2, oo)`
`(0, 2)`
उत्तर
`(0, 2)`
Explanation:
`f(x) = x^2e^(-x)`
`f^'(x) = 2xe^(-x) + x^2(-e^(-x)) = xe^(-x) (2 - x) = e^(-x) x(2 - x)`
Now `e^(-x)` is positive for all x ∈ R
`f^'(x)` = 0 at `x` = 0, 2
`x` = 0, `x` = 2 divide the number line into three disjoint interval Viz `(- oo, 0), (0, 2),(2, oo)`
(a) Interval `(- oo, 0)`
`x` is negative and `(2 - x)` is positive
∴ `f^'(x) = e^(-x) x(2 - x) = (+) (-) (+)` = Negative
⇒ `f` is decreasing in `(- oo, 0)`
(b) Interval `(0, 2)`
∴ `f^'(x) = e^(-x) x(2 - x) = (+) (+) (+)` = Positive
⇒ `f` is increasing in `(0, 2)`
(c) Interval `(2, oo)`
∴ `f^'(x) = e^(-x) x(2 - x) = (+) (+) (-)` = Negative
⇒ `f` is decreasing in the interval `(2, oo)`