Advertisements
Advertisements
प्रश्न
The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is
विकल्प
log16 (2 - x)
`1/2 log_16 (1 + x)/(1 - x)`
`1/2 log_16 (2x - 1)`
`1/4 log_16 (2x)/(2 - x)`
MCQ
उत्तर
`1/2 log_16 (1 + x)/(1 - x)`
Explanation:
Let y = f(x) = `(16^x - 16^-x)/(16^x + 16^-x)`
∴ y = `(16^(2x) - 1)/(16^(2x) + 1)`
`=> 16^(2x) = (1 + y)/(1 - y)`
`=> 2x = log_16 (1 + y)/(1 - y)`
`=> x = 1/2 log_16 (1 + y)/(1 - y)`
`=> "f"^-1 (y) = 1/2 log_16 (1 + y)/(1 - y)`
`=> "f"^-1 (x) = 1/2 log_16 (1 + x)/(1 - x)`
shaalaa.com
Algebra of Functions
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?