Advertisements
Advertisements
प्रश्न
The lines `(1-x)/2=(y-1)/3=z/1` and `(2x-3)/(2p)=(y)/-1=(z-4)/7` are perpendicular to each other for p equal to ______.
विकल्प
`-1/2`
`1/2`
2
3
MCQ
रिक्त स्थान भरें
उत्तर
The lines `(1-x)/2=(y-1)/3=z/1` and `(2x-3)/(2p)=(y)/-1=(z-4)/7` are perpendicular to each other for p equal to 2.
Explanation:
`L_1: (1-x)/2 = (y-1)/3 = z/1`
`(x-1)/-2 = (y-1)/3 = z/1` ...(i)
`L_2: (2x-3)/(2p) = (y)/-1 = (z-4)/7`
`(x-3/2)/p = (y)/-1 = (z-4)/7` ...(ii)
On Comparing with
`(x-x_1)/a=(y-y_1)/b=(z-4)/7`
Direction ratio of line (i) are
a1 = −2, b1 = 3, c1 = 1
Direction ratio of line (ii) are
a2 = p, b2 = −1, c2 = 7
when L1 ⊥ L2 then a1a2 + b1b2 + c1c2 = 0
∴ −2 × p + 3 × (−1) + 1 × 7 = 0
∴ −2p − 3 + 7 = 0
∴ −2p + 4 = 0
∴ p = 2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?