हिंदी

The magnitudes of the gravitational potentials at distances r1 and r2 from the centre of a uniform sphere of radius R and mass M are V1 and V2 respectively. Then ______. -

Advertisements
Advertisements

प्रश्न

The magnitudes of the gravitational potentials at distances r1 and r2 from the centre of a uniform sphere of radius R and mass M are V1 and V2 respectively. Then ______.

विकल्प

  • `"V"_1/"V"_2 = "r"_1^2/"r"_2^2` ; if r1 < R and r2 < R.

  • `"V"_1/"V"_2 = "r"_2^2/"r"_1^2` ; if r1 > R and r2 > R.

  • `"V"_1/"V"_2 = "r"_2/"r"_1` ; if r1 < R and r2 < R.

  • `"V"_1/"V"_2 = "r"_1/"r"_2` ; if r1 > R and r2 > R.

MCQ
रिक्त स्थान भरें

उत्तर

The magnitudes of the gravitational potentials at distances r1 and r2 from the centre of a uniform sphere of radius R and mass M are V1 and V2 respectively. Then `"V"_1/"V"_2 = "r"_1^2/"r"_2^2` ; if r1 < R and r2 < R.

Explanation:

For r1 > R and r2 > R, Potential at r is,

`"V" = "GM"/"r"`

here, M = `4/3pi "R"^3"p"`

`therefore "V"_1 = (4/3pi "R"^3"pG")/"r"_1  "and"  (4/3pi "R"^3"pG")/"r"_2`

`therefore "V"_1/"V"_2 =  "r"_2/"r"_1`

For r1 < R and r2 < R,

The gravitational potential inside the earth is only due. to the mass of the earth that lies within a solid sphere of radius r.

`therefore "M" = 4/3pi "r"^3"p"`

`therefore "V"_1 = (4/3pi "r"_1^3"pG")/"r"_1 = 4/3pi "r"_1^2"pG"`

`therefore "V"_2 = (4/3pi "r"_2^3"pG")/"r"_2 = 4/3pi "r"_2^2"pG"`

`therefore  "V"_1/ "V"_2 = "r"_1^2/"r"_2^2`

shaalaa.com
Gravitational Potential and Potential Energy
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×