Advertisements
Advertisements
प्रश्न
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
विकल्प
a – b
a + b
`sqrt(a^2 + b^2)`
`sqrt(a^2 - b^2)`
MCQ
रिक्त स्थान भरें
उत्तर
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is a + b.
Explanation:
We know that distance of origin from
(x, y) = `sqrt(x^2 + y^2)`
= `sqrt(a^2 + b^2 - 2ab cos(t - (at)/b)`;
`≤ sqrt(a^2 + b^2 + 2ab)[{cos(t - (at)/b)}_min = -1]`
= a + b
∴ Maximum distance from origin = a + b
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?