हिंदी

The maximum value of the index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of the prism is A is ______. -

Advertisements
Advertisements

प्रश्न

The maximum value of the index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of the prism is A is ______.

विकल्प

  • `sqrt(1 + sin(A/2))`

  • `sqrt(1 + cos(A/2))`

  • `sqrt(1 + tan^2(A/2))`

  • `sqrt(1 + cot^2(A/2))`

MCQ
रिक्त स्थान भरें

उत्तर

The maximum value of the index of refraction of a material of a prism which allows the passage of light through it when the refracting angle of the prism is A is `underlinebb(sqrt(1 + cot^2(A/2)))`.

Explanation:

If the angle of incidence on face DC, or r2, is greater than the critical angle θC for the maximum angle of incidence (i1 = 90° = maximum) at face DB, a ray of light will not exit the prism for any value of the angle of incidence provided.

At DB, 1 × sin90° = μ sinr1

⇒ `r_1 = sin^-1(1/mu)`

or `r_1 = theta_C` .............(i)

For no emergence

r2 > θC ................(ii)

Adding equations (i) and (ii),

r1 + r2 > 2θC   ...(iii)

Also r1 + r2 = A ...(iv)

We know that the sum of all angles in any triangle equals 180.

90 – r1 + 90 – r2 + A = 180

A = r1 + r2

Now, solving equations (iii) and (iv),

A > 2θC

⇒ `sin  A/2 > sintheta_C`

µ > cosec `A/2`

As a result, the maximum value of

`mu = cosec  A/2 = sqrt(1 + cot^2  A/2)`

shaalaa.com
Refraction Through a Prism
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×