Advertisements
Advertisements
प्रश्न
The mean of 1, 3, 4, 5, 7, 4 is m. The numbers 3, 2, 2, 4, 3, 3, p have mean m − 1 and median q. Then, p + q =
विकल्प
4
5
6
7
उत्तर
`1,3,4,5,7,4`
Mean`=(1+3+4+5+7+4)/6`
`= 24/6`
`=4`
`M = 4`
Consider the numbers 3, 2, 2, 4, 3, 3, p.
Mean = \[\frac{3 + 2 + 3 + 4 + 3 + 3 + p}{7}\]
\[\Rightarrow 7 \times \left( 4 - 1 \right) = 17 + p\]
\[ \Rightarrow 21 = 17 + p\]
\[ \Rightarrow p = 4\]
Arranging the numbers 3, 2, 2, 4, 3, 3, 4 in ascending order, we have
2, 2, 3, 3, 3, 4, 4
Median`= ((n+1)/2)^(th)`term
`q = ((7-1)/2)^(th)` term
`=(8/2)^(th)`
`=4^(th)` term
∴ q = 3
So,
p+q = 4 +3
= 7
Hence, the correct option is (d).
APPEARS IN
संबंधित प्रश्न
The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs.18. Find the missing frequency f.
Daily pocket allowance (in Rs | 11 - 13 | 13 - 15 | 15 - 17 | 17 - 19 | 19 - 21 | 21 - 23 | 23 - 25 |
Number of workers | 7 | 6 | 9 | 13 | f | 5 | 4 |
The number of telephone calls received at an exchange per interval for 250 successive one minute intervals are given in the following frequency table:
No. of calls(x) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
No. of intervals (f) | 15 | 24 | 29 | 46 | 54 | 43 | 39 |
Compute the mean number of calls per interval.
The following table gives the number of branches and number of plants in the garden of a school.
No. of branches (x) | 2 | 3 | 4 | 5 | 6 |
No. of plants (f) | 49 | 43 | 57 | 38 | 13 |
Calculate the average number of branches per plant.
Find the mean of each of the following frequency distributions
Class interval | 0 - 8 | 8 - 16 | 16 - 24 | 24 - 32 | 32 - 40 |
Frequency | 6 | 7 | 10 | 8 | 9 |
A school has 4 sections of Chemistry in class X having 40, 35, 45 and 42 students. The mean marks obtained in Chemistry test are 50, 60, 55 and 45 respectively for the 4 sections. Determine the overall average of marks per student.
In a small scale industry, salaries of employees are given in the following distribution table:
Salary (in Rs.) |
4000 - 5000 |
5000 - 6000 |
6000 - 7000 |
7000 - 8000 |
8000 - 9000 |
9000 - 10000 |
Number of employees |
20 | 60 | 100 | 50 | 80 | 90 |
Then the mean salary of the employee is?
The average weight of a group of 25 men was calculated to be 78.4 kg. It was discovered later that one weight was wrongly entered as 69 kg instead of 96 kg. What is the correct average?
While computing mean of grouped data, we assume that the frequencies are ______.
An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table:
Number of seats | 100 – 104 | 104 – 108 | 108 – 112 | 112 – 116 | 116 – 120 |
Frequency | 15 | 20 | 32 | 18 | 15 |
Find the mean of the following frequency distribution:
Class: | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 |
Frequency: | 4 | 10 | 5 | 6 | 5 |