हिंदी

The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives a) only two complaints on a given day - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives a) only two complaints on a given day, b) at most two complaints on a given day. Use e−4 = 0.0183.

योग

उत्तर

Let X denote the number of complaints which a bank manager receives per day.

Given, m = 4 and e–4 = 0.0183

∴ X ∼ P(m) = X ∼ p(4)

The p.m.f. of X is given by

P(X = x) = `("e"^-"m" "m"^x)/(x!)`

∴ P(X = x) `("e"^-4(4)^x)/(x!), x` = 0, 1, 2,...

a) P(only two complaints on a given day)

= P(X = 2)

= `("e"^-4 (4)^2)/(2!)`

= `(0.0183 xx 16)/(2)`

= 0.1464

b) P(at most two complaints)

= P(X ≤ 2)

= P(X = 0 or X = 1 or X = 2)

= P(X = 0) + P(X = 1) + P(X = 2)

= `("e"^-4 (4)^0)/(0!) + ("e"^-4 (4)^1)/(1!) + 0.1464`   .....[From (i)]

= 0.0183 + 4 × 0.0183 + 0.1464

= 0.2379

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Probability Distributions - Exercise 8.4 [पृष्ठ १५२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Probability Distributions
Exercise 8.4 | Q 1.04 | पृष्ठ १५२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The number of complaints which a bank manager receives per day is a Poisson random variable with parameter m = 4. Find the probability that the manager will receive -

(a) only two complaints on any given day.

(b) at most two complaints on any given day

[Use e-4 =0.0183]


 If X has Poisson distribution with parameter m = 1, find P[X ≤ 1]  [Use `e^-1 = 0.367879`]


If X has a Poisson distribution with variance 2, find P(X ≤ 4) 

[Use e-2 = 0.1353] 


If X has a Poisson distribution with variance 2, find 

Mean of X [Use e-2 = 0.1353] 


If X has Poisson distribution with m = 1, then find P(X ≤ 1) given e−1 = 0.3678


If X has Poisson distribution with parameter m and P(X = 2) = P(X = 3), then find P(X ≥ 2). Use e−3 = 0.0497


The number of complaints which a bank manager receives per day follows a Poisson distribution with parameter m = 4. Find the probability that the manager receives only two complaints on a given day


A car firm has 2 cars, which are hired out day by day. The number of cars hired on a day follows Poisson distribution with mean 1.5. Find the probability that (i) no car is used on a given day, (ii) some demand is refused on a given day, given e−1.5 = 0.2231.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has exactly 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has more than 5 rats inclusive. Given e-5  = 0.0067.


It is known that, in a certain area of a large city, the average number of rats per bungalow is five. Assuming that the number of rats follows Poisson distribution, find the probability that a randomly selected bungalow has between 5 and 7 rats inclusive. Given e−5 = 0.0067.


If E(X) = m and Var (X) = m then X follows ______.


Solve the following problem :

If X follows Poisson distribution such that P(X = 1) = 0.4 and P(X = 2) = 0.2, find variance of X.


Solve the following problem :

If X follows Poisson distribution with parameter m such that
`("P"("X" = x + 1))/("P"("X" = x)) = (2)/(x + 1)`
Find mean and variance of X.


The expected value of the sum of two numbers obtained when two fair dice are rolled is ______.


Choose the correct alternative:

For the Poisson distribution ______


Choose the correct alternative:

A distance random variable X is said to have the Poisson distribution with parameter m if its p.m.f. is given by P(x) = `("e"^(-"m")"m"^"x")/("x"!)` the condition for m is ______


State whether the following statement is True or False:

X is the number obtained on upper most face when a die is thrown, then E(x) = 3.5


State whether the following statement is True or False:  

A discrete random variable X is said to follow the Poisson distribution with parameter m ≥ 0 if its p.m.f. is given by P(X = x) = `("e"^(-"m")"m"^"x")/"x"`, x = 0, 1, 2, .....


State whether the following statement is True or False:

If n is very large and p is very small then X follows Poisson distribution with n = mp


If X – P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2) given that e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

`(e^-mm^1)/(1!) = square`

∴ m = `square`

∴ mean = `square` = `square`

Then P(X = 2) = `square` = `square`


In a town, 10 accidents take place in the span of 50 days. Assuming that the number of accidents follows Poisson distribution, find the probability that there will be 3 or more accidents on a day.

(Given that e-0.2 = 0.8187)


If X ∼ P(m) with P(X = 1) = P(X = 2), then find the mean and P(X = 2).

Given e–2 = 0.1353

Solution: Since P(X = 1) = P(X = 2)

∴ `("e"^square"m"^1)/(1!) = ("e"^"-m""m"^2)/square`

∴ m = `square`

∴ P(X = 2) = `("e"^-2. "m"^2)/(2!)` = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×