हिंदी

The order of the differential equation whose general solution is given by y=C1e2x+C2+C3ex+C4sin(x+C5) is ______. -

Advertisements
Advertisements

प्रश्न

The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.

विकल्प

  • 5

  • 4

  • 3

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is 4.

Explanation:

`y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)`

`=C_1e^(C_2)e^(2x)+C_3e^x+C_4(sinx cos C_5+cosxsinC_5)`

= Ae2x + C3ex + B sinx + D cosx,

where `A=C_1e^(C_2),` B = C4 cos C5, D = C4 sin C5

This equation consists of four arbitrary constants.

∴ order of differential equation = 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×