Advertisements
Advertisements
प्रश्न
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is ______.
विकल्प
5
4
3
2
MCQ
रिक्त स्थान भरें
उत्तर
The order of the differential equation whose general solution is given by `y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)` is 4.
Explanation:
`y=C_(1)e^(2x+C_2)+C_3e^x+C_4sin(x+C_5)`
`=C_1e^(C_2)e^(2x)+C_3e^x+C_4(sinx cos C_5+cosxsinC_5)`
= Ae2x + C3ex + B sinx + D cosx,
where `A=C_1e^(C_2),` B = C4 cos C5, D = C4 sin C5
This equation consists of four arbitrary constants.
∴ order of differential equation = 4
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?