Advertisements
Advertisements
प्रश्न
The particular solution of the differential equation log `("dy"/"dx")` = x, when x = 0, y = 1 is ______.
विकल्प
y = ex + 2
y = - ex
y = - ex + 2
y = ex
MCQ
रिक्त स्थान भरें
उत्तर
The particular solution of the differential equation log `("dy"/"dx")` = x, when x = 0, y = 1 is y = ex .
Explanation:
We have, differential equations,
log `("dy"/"dx") = x => "dy"/"dx" = "e"^x`
⇒ dy = ex dx
Integrating on both sides, we get
∫ dy = ∫ ex dx
⇒ y = ex + C ...(i)
On putting x = 0, y = 1 is Eq. (i), we get
1 = e0 + C ⇒ C = 0
Now, particular solution of the given differential is y = ex.
shaalaa.com
Solution of a Differential Equation
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?