हिंदी

The particular solution of the differential equation log dydx(dydx) = x, when x = 0, y = 1 is ______. -

Advertisements
Advertisements

प्रश्न

The particular solution of the differential equation log `("dy"/"dx")` = x, when x = 0, y = 1 is ______.

विकल्प

  • y = ex + 2

  • y = - ex 

  • y = - ex + 2

  • y = ex 

MCQ
रिक्त स्थान भरें

उत्तर

The particular solution of the differential equation log `("dy"/"dx")` = x, when x = 0, y = 1 is y = ex .

Explanation:

We have, differential equations,

log `("dy"/"dx") = x => "dy"/"dx" = "e"^x`

⇒ dy = ex dx

Integrating on both sides, we get

∫ dy = ∫ ex dx

⇒ y = ex + C      ...(i)

On putting x = 0, y = 1 is Eq. (i), we get

1 = e0 + C ⇒ C = 0

Now, particular solution of the given differential is y = ex.

shaalaa.com
Solution of a Differential Equation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×