Advertisements
Advertisements
प्रश्न
The percentage of marks obtained by a student in monthly unit tests are given below:
Unit test: | I | II | III | IV | V |
Percentage of marks obtained: | 69 | 71 | 73 | 68 | 76 |
Find the probability that the student gets:
(i) more than 70% marks
(ii) less than 70% marks
(iii) a distinction
उत्तर
The total number of trials is 5.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P (A) = `m/n`
(i) Let A be the event of getting more than 70% marks.
The number of times A happens is 3.
Therefore, we have
P (A) = `3/5`
=0.6
(ii) Let B be the event of getting less than 70% marks.
The number of times B happens is 2.
Therefore, we have
P (B) = `2/5`
=0.4
(iii) Let C be the event of getting a distinction.
The number of times C happens is 1.
Therefore, we have
P (C) = `1/5`
= 0.2
APPEARS IN
संबंधित प्रश्न
Blood Group | Number of Students |
A | 9 |
B | 6 |
AB | 3 |
O | 12 |
Total | 30 |
The above frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays.
(i) he hits boundary
(ii) he does not hit a boundary.
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:
Outcome | 3 heads | 2 heads | 1 head | No head |
Frequency | 23 | 72 | 77 | 28 |
Find the probability of getting at most two heads.
A coin is tossed 1000 times, if the probability of getting a tail is 3/8, how many times head is obtained?
Two coins are tossed 1000 times and the outcomes are recorded as below:
Number of heads | 2 | 1 | 0 |
Frequency | 200 | 550 | 250 |
Based on this information, the probability for at most one head is
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs less than 4?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have more than 13 defective parts
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is:
- 40 years or more
- under 40 years
- having age from 30 to 39 years
- under 60 but over 39 years
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is under 60 but over 39 years