Advertisements
Advertisements
प्रश्न
The point which provides the solution of the linear programming problem, Max.(45x + 55y) subject to constraints x, y ≥ 0, 6x + 4y ≤ 120, 3x + 10y ≤ 180, is ______
विकल्प
(15, 10)
(10, 15)
(0, 18)
(20, 0)
MCQ
रिक्त स्थान भरें
उत्तर
The point which provides the solution of the linear programming problem, Max.(45x + 55y) subject to constraints x, y ≥ 0, 6x + 4y ≤ 120, 3x + 10y ≤ 180, is (10, 15).
Explanation:
The feasible region Lies on the origin side of the lines
6x + 4y = 120 and 3x + 10y = 180
The comer points of feasible region are
O(0, 0), A (20, 0), E (10, 15) and D (0, 18)
∴ The maximum value of 45x + 55y is at E(10, 15)
Max (45x + 55y) = 45(10) + 55(15)
= 1275
shaalaa.com
Linear Programming Problem (L.P.P.)
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?