Advertisements
Advertisements
प्रश्न
The points of discontinuity of the function
f(x) = `1/(x - 1)` if 0 ≤ x ≤ 2
= `(x + 5)/(x + 3) if 2 < x ≤ 4` in its domain are.
विकल्प
x = 1, x = 2
x = 0, x = 2
x = 2 only
x = 4 only
MCQ
उत्तर
x = 1, x = 2
Explanation:
f(x) = `{(1/(x - 1) "," if 0 ≤ x ≤ 2),((x + 5)/(x + 3) "," if 2 < x ≤ 4):}`
Clearly, f(x) is not defined at x = 1
Hence, f(x) is discontinuous at x = 1
At x = 2
`lim_(x -> 2^-) "f"(x) = lim_(x -> 2^-) 1/(x - 1) = 1/(2 - 1)` = 1
`lim_(x -> 2^+) "f"(x) = lim_(x -> 2^+) (x + 5)/(x + 3) = (2 + 5)/(2 + 3) = 7/5`
∴ `lim_(x -> 2^-) "f"(x) ne lim_(x -> 2^+) "f"(x)`
∴ f(x) is discontinuous at x = 2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?