Advertisements
Advertisements
प्रश्न
The region between two concentric spheres of radii a < b contain volume charge density ρ(r) = `"c"/"r"`, where c is constant and r is radial- distanct from centre no figure needed. A point charge q is placed at the origin, r = 0. Value of c is in such a way for which the electric field in the region between the spheres is constant (i.e. independent of r). Find the value of c:
विकल्प
`"q"/(2pi"a"^2)`
`"q"/(4pi"a"^2)`
`"q"/(pi"a"^2)`
`"q"/"a"^2`
उत्तर
`bb("q"/(4pi"a"^2))`
Explanation:
Total flux = `"Total charge"/epsilon_0` (Gauss law)
`"E"xx4pir^2= "q"/epsilon_0+(4pi)/epsilon_0int_"a"^"r""c"/"r"xx"r"^2"dr"`
`"E"xx4pir^2= "q"/epsilon_0+(4pi"c"["r"^2-"a"^2])/epsilon_0`
E = `"q"/(4pi"r"^2epsilon_0)+("c"["r"^2-"a"^2])/("r"^2epsilon_0)`
E = `"q"/(4pi"r"^2epsilon_0)+"c"/(epsilon_0)-("ca"^2)/("r"^2epsilon_0)`
as E is independent of r
∴ `"q"/(4pi"r"^2epsilon_0)= ("ca"^2)/("r"^2epsilon_0)`
c = `"q"/(4pi"a"^2)`
Now E is `"q"/(4piepsilon_0"a"^2)`