Advertisements
Advertisements
प्रश्न
The regression equation of x on y is 40x – 18y = 214 ......(i)
The regression equation of y on x is 8x – 10y + 66 = 0 ......(ii)
Solving equations (i) and (ii),
`barx = square`
`bary = square`
∴ byx = `square/square`
∴ bxy = `square/square`
∴ r = `square`
Given variance of x = 9
∴ byx = `square/square`
∴ `sigma_y = square`
उत्तर
The regression equation of x on y is 40x – 18y = 214 ......(i)
The regression equation of y on x is 8x – 10y + 66 = 0 ......(ii)
Solving equations (i) and (ii),
By 5 × (ii) – (i), we get
40x – 50y = – 330
40x – 18y = 214
– + –
– 32y = – 544
∴ y = `544/32` = 17
Substituting y = 17 in (i), we get
8x – 10 × 17 = – 66
∴ 8x – 170 = – 66
∴ 8x = – 66 + 170
∴ 8x = 104
∴ x = `104/8` = 13
`barx = 13
`bary` = 17
8x – 10y + 66 = 0 is regression equation of y on x.
⇒ 10y = 8x + 66
⇒ y = `4/5 x + 6.6
⇒ byx = `4/5`
40x – 18y = 214 is regression equation of x on y.
⇒ 40x = 18y + 214
⇒ x = `9/20 y + 5.35`
∴ bxy = `9/20`
r = `+- sqrt("b"_(xy) "b"_(yx))`
= `+ sqrt((9/20 xx 4/5))`
= `+ sqrt(9/25)`
= `+ 3/5`
= 0.6
Given variance of x = 9 ⇒ σx2 = 9 ⇒ σx = 3
∴ byx = `("r"sigma_y)/sigma_x`
∴ `4/5 = (0.6 xx sigma_y)/3`
∴ σy = `(4 xx 3)/(5 xx 0.6)`
∴ σy = 4
APPEARS IN
संबंधित प्रश्न
Find the equation of the regression line of y on x, if the observations (x, y) are as follows :
(1,4),(2,8),(3,2),(4,12),(5,10),(6,14),(7,16),(8,6),(9,18)
Also, find the estimated value of y when x = 14.
If Σx1 = 56 Σy1 = 56, Σ`x_1^2` = 478,
Σ`y_1^2` = 476, Σx1y1 = 469 and n = 7, Find
(a) the regression equation of y on x.
(b) y, if x = 12.
The two lines of regressions are x + 2y – 5 = 0 and 2x + 3y – 8 = 0 and the variance of x is 12. Find the variance of y and the coefficient of correlation.
For the following bivariate data obtain the equations of two regression lines:
X | 1 | 2 | 3 | 4 | 5 |
Y | 5 | 7 | 9 | 11 | 13 |
Given the following data, obtain a linear regression estimate of X for Y = 10, `bar x = 7.6, bar y = 14.8, sigma_x = 3.2, sigma_y = 16` and r = 0.7
bYX is ______.
If for bivariate data `bar x = 10, bar y = 12,` v(x) = 9, σy = 4 and r = 0.6 estimate y, when x = 5.
The equation of the line of regression of y on x is y = `2/9` x and x on y is x = `"y"/2 + 7/6`.
Find (i) r, (ii) `sigma_"y"^2 if sigma_"x"^2 = 4`
If for a bivariate data byx = – 1.2 and bxy = – 0.3 then find r.
From the two regression equations y = 4x – 5 and 3x = 2y + 5, find `bar x and bar y`.
The equations of the two lines of regression are 3x + 2y − 26 = 0 and 6x + y − 31 = 0 Find
- Means of X and Y
- Correlation coefficient between X and Y
- Estimate of Y for X = 2
- var (X) if var (Y) = 36
Regression equation of X on Y is ______
Regression equation of X on Y is_________
In the regression equation of Y on X, byx represents slope of the line.
Choose the correct alternative:
The slope of the line of regression of y on x is called the ______
Choose the correct alternative:
u = `(x - 20)/5` and v = `(y - 30)/4`, then bxy =
Choose the correct alternative:
y = 5 – 2.8x and x = 3 – 0.5 y be the regression lines, then the value of byx is
State whether the following statement is True or False:
The equations of two regression lines are 10x – 4y = 80 and 10y – 9x = 40. Then bxy = 0.9
State whether the following statement is True or False:
y = 5 + 2.8x and x = 3 + 0.5y be the regression lines of y on x and x on y respectively, then byx = – 0.5
State whether the following statement is True or False:
bxy is the slope of regression line of y on x
If the regression equations are 8x – 10y + 66 = 0 and 40x – 18y = 214, the mean value of y is ______
The equations of the two lines of regression are 2x + 3y − 6 = 0 and 5x + 7y − 12 = 0. Identify the regression lines
The age in years of 7 young couples is given below. Calculate husband’s age when wife’s age is 38 years.
Husband (x) | 21 | 25 | 26 | 24 | 22 | 30 | 20 |
Wife (y) | 19 | 20 | 24 | 20 | 22 | 24 | 18 |
The equations of the two lines of regression are 6x + y − 31 = 0 and 3x + 2y – 26 = 0. Identify the regression lines
If n = 5, Σx = Σy = 20, Σx2 = Σy2 = 90, Σxy = 76 Find the regression equation of x on y
If `(x - 1)/l = (y - 2)/m = (z + 1)/n` is the equation of the line through (1, 2, -1) and (-1, 0, 1), then (l, m, n) is ______
For certain bivariate data on 5 pairs of observations given:
∑x = 20, ∑y = 20, ∑x2 = 90, ∑y2 = 90, ∑xy = 76 then bxy = ______.
The management of a large furniture store would like to determine sales (in thousands of ₹) (X) on a given day on the basis of number of people (Y) that visited the store on that day. The necessary records were kept, and a random sample of ten days was selected for the study. The summary results were as follows:
`sumx_i = 370 , sumy_i = 580, sumx_i^2 = 17200 , sumy_i^2 = 41640, sumx_iy_i = 11500, n = 10`
Complete the following activity to find, the equation of line of regression of Y on X and X on Y for the following data:
Given:`n=8,sum(x_i-barx)^2=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
Solution:
Given:`n=8,sum(x_i-barx)=36,sum(y_i-bary)^2=40,sum(x_i-barx)(y_i-bary)=24`
∴ `b_(yx)=(sum(x_i-barx)(y_i-bary))/(sum(x_i-barx)^2)=square`
∴ `b_(xy)=(sum(x_i-barx)(y_i-bary))/(sum(y_i-bary)^2)=square`
∴ regression equation of Y on :
`y-bary=b_(yx)(x-barx)` `y-bary=square(x-barx)`
`x-barx=b_(xy)(y-bary)` `x-barx=square(y-bary)`