हिंदी

The slope of normal to the curve x = tt and y = ttt-1tat t = 4 is _____. -

Advertisements
Advertisements

प्रश्न

The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.

विकल्प

  • `(- 17)/4`

  • `4/17`

  • `(- 4)/17`

  • `17/4`

MCQ
रिक्त स्थान भरें

उत्तर

The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is `underline((- 4)/17)`.

Explanation:

We have, x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`

Now, `"dx"/"dt" = 1/(2sqrt"t"), "dy"/"dt" = 1 + 1/2"t"^(- 3//2)`

`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

`= ((1 + 1/2 "t"^(- 3//2))/(1/(2sqrt"t")))`

`= 2sqrt"t" (1 + 1/2 "t"^(-3//2))`

`= 2sqrt"t" (1 + 1/(2"t"^(3//2)))`

`= (2"t"^(3//2) + 1)/"t"`

At t = 4, `"dy"/"dx" = (2(4)^(3//2) + 1)/4 = 17/4`

∴ Slope of normal at t = 4, - `1/("dy"/"dx") = - 4/17`

shaalaa.com
Equations of Line in Different Forms
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×