Advertisements
Advertisements
प्रश्न
The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.
विकल्प
`(- 17)/4`
`4/17`
`(- 4)/17`
`17/4`
MCQ
रिक्त स्थान भरें
उत्तर
The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is `underline((- 4)/17)`.
Explanation:
We have, x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`
Now, `"dx"/"dt" = 1/(2sqrt"t"), "dy"/"dt" = 1 + 1/2"t"^(- 3//2)`
`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
`= ((1 + 1/2 "t"^(- 3//2))/(1/(2sqrt"t")))`
`= 2sqrt"t" (1 + 1/2 "t"^(-3//2))`
`= 2sqrt"t" (1 + 1/(2"t"^(3//2)))`
`= (2"t"^(3//2) + 1)/"t"`
At t = 4, `"dy"/"dx" = (2(4)^(3//2) + 1)/4 = 17/4`
∴ Slope of normal at t = 4, - `1/("dy"/"dx") = - 4/17`
shaalaa.com
Equations of Line in Different Forms
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?