हिंदी

The solution of the differential equation dddydx+2ytanx=2xcos2x is ______. -

Advertisements
Advertisements

प्रश्न

The solution of the differential equation `("d"y)/("d"x) + 2y tan x = 2x cos^2x` is ______.

विकल्प

  • y sec2x = x2 + c

  • y sec x = c

  • y cosec x2 = c

  • y sec x2 = c

MCQ
रिक्त स्थान भरें

उत्तर

The solution of the differential equation `("d"y)/("d"x) + 2y tan x = 2x cos^2x` is y sec2x = x2 + c.

Explanation:

 `("d"y)/("d"x) + 2y tan x = 2x cos^2x`

∴ I.F. = `"e"^(2int tanx  "d"x)`

= `"e"^(2log secx)`

= `sec^2x`

∴ Solution of the given equation is

`y* sec^2x = int 2x sec^2x* cos^2x  "d"x + "c"`

⇒ `y sec^2x = int 2x  "d"x + "c"`

⇒ y sec2x = x2 + c

shaalaa.com
Solution of a Differential Equation
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×