हिंदी

The Sum of the 4th and 8th Terms of an Ap is 24 and the Sum of Its 6th and 10th Terms is 44. Find the Sum of Its First 10 Terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the 4th and 8th terms of an AP is 24 and the sum of its 6th and 10th terms is 44. Find the sum of its first 10 terms.   

उत्तर

Let a be the first and d be the common difference of the AP.

∴ a4 + as = 24                        (Given)

⇒ ( a +3d) + (a +7d) = 24                  [ a= a +(n-1) d ]

⇒ 2a + 10d = 24 

⇒ a + 5d = 12                         ...................(1)

Also, 

∴ a6 + a10 = 44                      (Given)

⇒ (a +5d) + (a + 9d) = 44               [ an = a + (n-1)d] 

⇒ 2a + 14 d = 44

 ⇒  a + 7d = 22                   ................(2)

Subtracting (1) from (2), we get

(a + 7d) - (a + 5d) = 22-12 

⇒  2d = 10 

⇒  d= 5

Putting d = 5 in (1), we get

a +5 × 5 =12

⇒ a = 12-25 = -13 

`"Using the formula," S_n = n/2 [ 2a +(n-1) d] ,`we get

`S_10 = 10/2 [ 2 xx (-13 ) + (10-1) xx5]`

= 5 × (-26 + 45)

= 5 ×  19 

=95 

Hence, the required sum is 95.

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Arithmetic Progression - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 11 Arithmetic Progression
Exercises 4 | Q 36

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×